Advertisement

The Electro-peroxone Technology as a Promising Advanced Oxidation Process for Water and Wastewater Treatment

  • Yujue WangEmail author
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)

Abstract

The electro-peroxone (E-peroxone) process is a novel electrochemical advanced oxidation process (EAOP) that is enabled by in situ generation of hydrogen peroxide (H2O2) from cathodic oxygen (O2) reduction during conventional ozonation. The electro-generated H2O2 can considerably enhance ozone (O3) transformation to hydroxyl radicals (⋅OH), thus greatly enhancing pollutant degradation and total organic carbon (TOC) mineralization by the E-peroxone process than by conventional ozonation. Due to its higher kinetics of pollutant degradation, the E-peroxone process can also reduce reaction time and energy consumption required for water and wastewater treatment. In addition, the in situ generated H2O2 can effectively reduce bromate formation during the E-peroxone treatment of bromide-containing water compared to conventional ozonation. All oxidants (O3, H2O2, and ⋅OH) are produced on site at controllable rates during the E-peroxone process using only clean oxygen and electricity. No chemicals or catalysts are added in the E-peroxone process nor does it produce secondary pollutants. By simply installing low-cost carbon-based cathodes in ozone contactors, conventional ozonation systems that are commonly used in water and wastewater utilities can be easily retrofitted to the E-peroxone process with minimal upgrade work and costs. Therefore, the E-peroxone process can provide a convenient and economical way to significantly improve the performance of existing ozonation systems in many aspects and has thus emerged as a promising EAOP for practical water and wastewater treatment.

Keywords

Electrochemical advanced oxidation process Electro-peroxone Hydrogen peroxide Micropollutant Ozone Wastewater treatment Water treatment 

References

  1. 1.
    von Sonntag C, von Gunten U (2012) Chemistry of ozone in water and wastewater treatment. From basic principles to applications, vol EPFL-BOOK-181142. IWA Publishing, LondonGoogle Scholar
  2. 2.
    Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal Environ 166–167(0):603–643. doi: 10.1016/j.apcatb.2014.11.016 CrossRefGoogle Scholar
  3. 3.
    Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569. doi: 10.1021/Cr9001319 CrossRefGoogle Scholar
  4. 4.
    Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641. doi: 10.1080/10643389.2013.829765 CrossRefGoogle Scholar
  5. 5.
    Sires I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut R 21(14):8336–8367. doi: 10.1007/s11356-014-2783-1 CrossRefGoogle Scholar
  6. 6.
    Glaze WH (1987) Drinking-water treatment with ozone. Environ Sci Technol 21(3):224–230. doi: 10.1021/es00157a001 CrossRefGoogle Scholar
  7. 7.
    Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water-treatment. Chem Rev 93(2):671–698. doi: 10.1021/cr00018a003 CrossRefGoogle Scholar
  8. 8.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O) in aqueous solution. J Phys Chem Ref Data Monogr 17(2):513–886. doi: 10.1063/1.555805 CrossRefGoogle Scholar
  9. 9.
    Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45(42):6962–6984. doi: 10.1002/anie.200503779 CrossRefGoogle Scholar
  10. 10.
    Brillas E, Sires I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570–6631. doi: 10.1021/Cr900136g CrossRefGoogle Scholar
  11. 11.
    Zhu X, Logan BE (2013) Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. J Hazard Mater 252–253:198–203. doi: 10.1016/j.jhazmat.2013.02.051 CrossRefGoogle Scholar
  12. 12.
    Barazesh JM, Hennebel T, Jasper JT, Sedlak DL (2015) Modular advanced oxidation process enabled by cathodic hydrogen peroxide production. Environ Sci Technol 49(12):7391–7399. doi: 10.1021/acs.est.5b01254 CrossRefGoogle Scholar
  13. 13.
    Rosenfeldt EJ, Linden KG, Canonica S, von Gunten U (2006) Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Res 40(20):3695–3704. doi: 10.1016/j.watres.2006.09.008 CrossRefGoogle Scholar
  14. 14.
    Katsoyiannis IA, Canonica S, von Gunten U (2011) Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Res 45(13):3811–3822. doi: 10.1016/j.watres.2011.04.038 CrossRefGoogle Scholar
  15. 15.
    Frangos P, Shen WH, Wang HJ, Li X, Yu G, Deng SB, Huang J, Wang B, Wang YJ (2016) Improvement of the degradation of pesticide deethylatrazine by combining UV photolysis with electrochemical generation of hydrogen peroxide. Chem Eng J 291:215–224. doi: 10.1016/j.cej.2016.01.089 CrossRefGoogle Scholar
  16. 16.
    Yuan S, Li ZX, Wang YJ (2013) Effective degradation of methylene blue by a novel electrochemically driven process. Electrochem Commun 29:48–51. doi: 10.1016/j.elecom.2013.01.012 CrossRefGoogle Scholar
  17. 17.
    Frangos P, Wang HJ, Shen WH, Yu G, Deng SB, Huang J, Wang B, Wang YJ (2016) A novel photoelectro-peroxone process for the degradation and mineralization of substituted benzenes in water. Chem Eng J 286:239–248. doi: 10.1016/j.cej.2015.10.096 CrossRefGoogle Scholar
  18. 18.
    Brillas E, Mur E, Casado J (1996) Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J Electrochem Soc 143(3):L49–L53CrossRefGoogle Scholar
  19. 19.
    Wang HJ, Yuan S, Zhan JH, Wang YJ, Yu G, Deng SB, Huang J, Wang B (2015) Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. Water Res 80:20–29. doi: 10.1016/j.watres.2015.05.024 CrossRefGoogle Scholar
  20. 20.
    Yao WK, Wang XF, Yang HW, Yu G, Deng SB, Huang J, Wang B, Wang YJ (2016) Removal of pharmaceuticals from secondary effluents by an electro-peroxone process. Water Res 88:826–835. doi: 10.1016/j.watres.2015.11.024 CrossRefGoogle Scholar
  21. 21.
    Li XZ, Liu HS (2005) Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment. Environ Sci Technol 39(12):4614–4620. doi: 10.1021/es048276k CrossRefGoogle Scholar
  22. 22.
    Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ Sci Technol 34(16):3474–3479CrossRefGoogle Scholar
  23. 23.
    von Gunten U (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467. doi: 10.1016/S0043-1354(02)00457-8 CrossRefGoogle Scholar
  24. 24.
    von Gunten U (2003) Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37(7):1469–1487. doi: 10.1016/S0043-1354(02)00458-X CrossRefGoogle Scholar
  25. 25.
    Wang HJ, Bakheet B, Yuan S, Li X, Yu G, Murayama S, Wang YJ (2015) Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process. J Hazard Mater 294:90–98. doi: 10.1016/j.jhazmat.2015.03.058 CrossRefGoogle Scholar
  26. 26.
    Li X, Wang YJ, Yuan S, Li ZX, Wang B, Huang J, Deng SB, Yu G (2014) Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. Water Res 63:81–93. doi: 10.1016/j.watres.2014.06.009 CrossRefGoogle Scholar
  27. 27.
    Li X, Wang YJ, Zhao J, Wang HJ, Wang B, Huang J, Deng SB, Yu G (2015) Electro-peroxone treatment of the antidepressant venlafaxine: operational parameters and mechanism. J Hazard Mater 300:298–306. doi: 10.1016/j.jhazmat.2015.07.004 CrossRefGoogle Scholar
  28. 28.
    WHO G (2011) Guidelines for drinking water quality. World Health Organization, GenevaGoogle Scholar
  29. 29.
    USEPA (1998) National primary drinking water regulations: disinfectants and disinfection byproducts – final rule. Federal Register, vol 63Google Scholar
  30. 30.
    European Union (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. European Union, BrusselsGoogle Scholar
  31. 31.
    Yao W, Qu Q, von Gunten U, Chen C, Yu G, Wang Y (2017) Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process. Water Res 108:373–382. doi: 10.1016/j.watres.2016.11.014 CrossRefGoogle Scholar
  32. 32.
    Li YK, Shen WH, SJ F, Yang HW, Yu G, Wang YJ (2015) Inhibition of bromate formation during drinking water treatment by adapting ozonation to electro-peroxone process. Chem Eng J 264:322–328. doi: 10.1016/j.cej.2014.11.120 CrossRefGoogle Scholar
  33. 33.
    Li ZX, Yuan S, Qiu CC, Wang YJ, Pan XJ, Wang JL, Wang CW, Zuo JA (2013) Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment. Electrochim Acta 102:174–182. doi: 10.1016/j.electacta.2013.04.034 CrossRefGoogle Scholar
  34. 34.
    Bakheet B, Yuan S, Li ZX, Wang HJ, Zuo JN, Komarneni S, Wang YJ (2013) Electro-peroxone treatment of Orange II dye wastewater. Water Res 47(16):6234–6243. doi: 10.1016/j.watres.2013.07.042 CrossRefGoogle Scholar
  35. 35.
    Haynes WM (2014) CRC handbook of chemistry and physics, 95th edn. CRC Press, Boca Raton, FLGoogle Scholar
  36. 36.
    Kishimoto N, Morita Y, Tsuno H, Oomura T, Mizutani H (2005) Advanced oxidation effect of ozonation combined with electrolysis. Water Res 39(19):4661–4672. doi: 10.1016/j.watres.2005.09.001 CrossRefGoogle Scholar
  37. 37.
    Xia G, Wang Y, Wang B, Huang J, Deng S, Yu G (2017) The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process. Water Res 118:26–38. doi: 10.1016/j.watres.2017.04.005 CrossRefGoogle Scholar
  38. 38.
    Šljukić B, Banks C, Compton R (2005) An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes. J Iran Chem Soc 2(1):1–25CrossRefGoogle Scholar
  39. 39.
    Sein MM, Golloch A, Schmidt TC, von Sonntag C (2007) No marked kinetic isotope effect in the peroxone (H2O2/D2O2+O3) reaction: mechanistic consequences. ChemPhysChem 8(14):2065–2067. doi: 10.1002/cphc.200700493 CrossRefGoogle Scholar
  40. 40.
    Fischbacher A, von Sonntag J, von Sonntag C, Schmidt TC (2013) The ⋅OH radical yield in the H2O2+O3 (peroxone) reaction. Environ Sci Technol 47(17):9959–9964. doi: 10.1021/es402305r CrossRefGoogle Scholar
  41. 41.
    Nöthe T, Fahlenkamp H, CV S (2009) Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield. Environ Sci Technol 43(15):5990–5995. doi: 10.1021/es900825f CrossRefGoogle Scholar
  42. 42.
    Flyunt R, Leitzke A, Mark G, Mvula E, Reisz E, Schick R, von Sonntag C (2003) Determination of ⋅OH, O2, and hydroperoxide yields in ozone reactions in aqueous solution. J Phys Chem B 107(30):7242–7253. doi: 10.1021/jp022455b CrossRefGoogle Scholar
  43. 43.
    Lee Y, Kovalova L, McArdell CS, von Gunten U (2014) Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Res 64(0):134–148. doi: 10.1016/j.watres.2014.06.027 CrossRefGoogle Scholar
  44. 44.
    Pocostales JP, Sein MM, Knolle W, von Sonntag C, Schmidt TC (2010) Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): the role of ozone consumption by dissolved organic matter. Environ Sci Technol 44(21):8248–8253. doi: 10.1021/es1018288 CrossRefGoogle Scholar
  45. 45.
    von Gunten U, Hoigne J (1994) Bromate formation during ozonization of bromide-containing waters: interaction of ozone and hydroxyl radical reactions. Environ Sci Technol 28(7):1234–1242. doi: 10.1021/es00056a009 CrossRefGoogle Scholar
  46. 46.
    von Gunten U, Oliveras Y (1997) Kinetics of the reaction between hydrogen peroxide and hypobromous acid: implication on water treatment and natural systems. Water Res 31(4):900–906. doi: 10.1016/s0043-1354(96)00368-5 CrossRefGoogle Scholar
  47. 47.
    Lin ZR, Yao WK, Wang YJ, Yu G, Deng SB, Huang J, Wang B (2016) Perchlorate formation during the electro-peroxone treatment of chloride-containing water: effects of operational parameters and control strategies. Water Res 88:691–702. doi: 10.1016/j.watres.2015.11.005 CrossRefGoogle Scholar
  48. 48.
    Shen W, Wang Y, Zhan J, Wang B, Huang J, Deng S, Yu G (2017) Kinetics and operational parameters for 1,4-dioxane degradation by the photoelectro-peroxone process. Chem Eng J 310(Part 1):249–258. doi: 10.1016/j.cej.2016.10.111 CrossRefGoogle Scholar
  49. 49.
    Bessegato GG, Cardoso JC, da Silva BF, Zanoni MVB (2016) Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in acid yellow 1 mineralization. Appl Catal Environ 180:161–168. doi: 10.1016/j.apcatb.2015.06.013 CrossRefGoogle Scholar
  50. 50.
    Mena E, Rey A, Acedo B, Beltran FJ, Malato S (2012) On ozone-photocatalysis synergism in black-light induced reactions: oxidizing species production in photocatalytic ozonation versus heterogeneous photocatalysis. Chem Eng J 204:131–140. doi: 10.1016/j.cej.2012.07.076 CrossRefGoogle Scholar
  51. 51.
    Guo WQ, QL W, Zhou XJ, Cao HO, JS D, Yin RL, Ren NQ (2015) Enhanced amoxicillin treatment using the electro-peroxone process: key factors and degradation mechanism. RSC Adv 5(65):52695–52702. doi: 10.1039/c5ra07951a CrossRefGoogle Scholar
  52. 52.
    Hou MF, Chu YF, Li X, Wang HJ, Yao WK, Yu G, Murayama S, Wang YJ (2016) Electro-peroxone degradation of diethyl phthalate: cathode selection, operational parameters, and degradation mechanisms. J Hazard Mater 319:61–68. doi: 10.1016/j.jhazmat.2015.12.054 CrossRefGoogle Scholar
  53. 53.
    Zhan JH, Wang HJ, Pan XJ, Wang JL, Yu G, Deng SB, Huang J, Wang B, Wang YJ (2016) Simultaneous regeneration of p-nitrophenol-saturated activated carbon fiber and mineralization of desorbed pollutants by electro-peroxone process. Carbon 101:399–408. doi: 10.1016/j.carbon.2016.02.023 CrossRefGoogle Scholar
  54. 54.
    Zhan JH, Wang YJ, Wang HJ, Shen WH, Pan XJ, Wang JL, Yu G (2016) Electro-peroxone regeneration of phenol-saturated activated carbon fiber: the effects of irreversible adsorption and operational parameters. Carbon 109:321–330. doi: 10.1016/j.carbon.2016.08.034 CrossRefGoogle Scholar
  55. 55.
    Yao W, Lin Z, von Gunten U, Yang H, Yu G, Wang Y. Pilot-scale evaluation of an electro-peroxone process for pharmaceutical abatements (in preparation)Google Scholar
  56. 56.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077. doi: 10.1126/science.1127291 CrossRefGoogle Scholar
  57. 57.
    Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995. doi: 10.1016/j.watres.2012.11.027 CrossRefGoogle Scholar
  58. 58.
    Mizuno T, Ohara S, Nishimura F, Tsuno H (2011) O3/H2O2 process for both removal of odorous algal-derived compounds and control of bromate ion formation. Ozone Sci Eng 33(2):121–135. doi: 10.1080/01919512.2011.548200 CrossRefGoogle Scholar
  59. 59.
    Narbaitz RM, Cen JQ (1994) Electrochemical regeneration of granular activated carbon. Water Res 28(8):1771–1778. doi: 10.1016/0043-1354(94)90250-X CrossRefGoogle Scholar
  60. 60.
    Berenguer R, Marco-Lozar JP, Quijada C, Cazorla-Amoros D, Morallon E (2010) Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium. Carbon 48(10):2734–2745. doi: 10.1016/j.carbon.2010.03.071 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of EnvironmentTsinghua UniversityBeijingChina

Personalised recommendations