Skip to main content

Advances in Carbon Felt Material for Electro-Fenton Process

  • Chapter
  • First Online:
Electro-Fenton Process

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 61))

Abstract

In electro-Fenton process, carbon-based materials, particularly 3D carbon felt, are the best choices for the cathodic electrodes because of several advantages such as low cost, excellent electrolytic efficiency, high surface area, and porosity. In this chapter, various aspects of this material are discussed in detail. This chapter is divided into three main sections, including (1) characterization of carbon felt (CF), (2) modification of CF, and (3) application of CF in electro-Fenton (EF) process to remove biorefractory pollutants. First of all, the typical characteristics of CF such as morphology, porosity, and conductivity are discussed. Next, in the modification section, we introduce different methods to improve the performance of CF. We especially focus on the surface area and electrochemical activity toward electrodes applications. Finally, both modified and non-modified CF is used as cathode materials for EF systems like homogeneous, heterogeneous, hybrid, or pilot-scale types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHPS:

4-Amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid

ALD:

Atomic Layer Deposition

AO7:

Acid orange 7

APPJ:

Atmospheric Pressure Plasma Jet

AQDS:

Anthraquinone-2,6-disulfonate

BDD:

Boron-doped diamond

BEF:

Bio-electro-Fenton

CF:

Carbon felt

CNT:

Carbon nanotube

CTAB:

Cetyl trimethylammonium bromide

CV:

Cyclic voltammogram

CVD:

Chemical vapor deposition

DCF:

Diclofenac

DMF:

N,N-dimethyl formamide

DO 61:

Direct orange 61

EC:

Energy efficiency

EF:

Electro-Fenton

ENXN:

Enoxacin

EPD:

Electrophoretic deposition

FeAB:

Iron alginate gel beads

GF:

Graphite felt

GO:

Graphene oxide

LDH:

Layered double hydroxide

MCE:

Mineralization current efficiency

MCF:

Microbial fuel cell

MO:

Methyl orange

N-doped:

Nitrogen-doped

ORR:

Oxygen reduction reaction

PAH:

Polycyclic aromatic hydrocarbon

PAN-CF:

PolyAcryloNitrile-Carbon Felt

PAN-GF:

Polyacrylonitrile-graphite felt

PANi:

Polyaniline

PB:

Prussian blue

PCOC:

4-Chloro-2-methylphenol

PEM:

Proton Exchange Membrane

POP:

Persistent Organic Pollutant

PPy:

Polypyrrole

RF:

Radiofrequency

rGO:

Reduced graphene oxide

RTD:

Residence Time Distribution

SCEs:

Saturated calomel electrode

SEM:

Scanning Electron Microscopy

SPEF:

Solar Photo-electro-Fenton

SWCNT:

Single-walled carbon nanotube

TOC:

Total organic carbon

TT:

Thermal treatment

VRFE:

Vanadium redox flow battery

XPS:

X-ray photoelectron spectroscopy

ZIF:

Zeolitic Imidazolate Framework

ZME:

Zeolite-modified electrode

References

  1. Smith REG, Davies TJ, Baynes NB, Nichols RJ (2015) The electrochemical characterisation of graphite felts. J Electroanal Chem 747:29–38. doi:10.1016/j.jelechem.2015.03.029

    CAS  Google Scholar 

  2. Di Blasi A, Di Blasi O, Briguglio N, Aricò AS, Sebastián D, Lázaro MJ, Monforte G, Antonucci V (2013) Investigation of several graphite-based electrodes for vanadium redox flow cell. J Power Sources 227:15–23. doi:10.1016/j.jpowsour.2012.10.098

    Google Scholar 

  3. Wang Y, Hasebe Y (2009) Carbon felt-based biocatalytic enzymatic flow-through detectors: chemical modification of tyrosinase onto amino-functionalized carbon felt using various coupling reagents. Talanta 79(4):1135–1141. doi:10.1016/j.talanta.2009.02.028

    Google Scholar 

  4. Han L, Tricard S, Fang J, Zhao J, Shen W (2013) Prussian blue @ platinum nanoparticles/graphite felt nanocomposite electrodes: application as hydrogen peroxide sensor. Biosens Bioelectron 43:120–124. doi:10.1016/j.bios.2012.12.003

    CAS  Google Scholar 

  5. Kim KJ, Kim Y-J, Kim J-H, Park M-S (2011) The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Mater Chem Phys 131(1–2):547–553. doi:10.1016/j.matchemphys.2011.10.022

    CAS  Google Scholar 

  6. González Z, Sánchez A, Blanco C, Granda M, Menéndez R, Santamaría R (2011) Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochem Commun 13(12):1379–1382. doi:10.1016/j.elecom.2011.08.017

    Google Scholar 

  7. Chakrabarti MH, Brandon NP, Hajimolana SA, Tariq F, Yufit V, Hashim MA, Hussain MA, Lowd CTJ, Aravind PV (2014) Application of carbon materials in redox flow batteries. J Power Sources 253:150–166. doi:10.1016/j.jpowsour.2013.12.038

    CAS  Google Scholar 

  8. Sun B, Kazacos MS (1992) Modification of graphite electrode materials for vanadium redox flow battery application – I. Thermal treatment. Electrochim Acta 37(7):1253–1260

    CAS  Google Scholar 

  9. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    CAS  Google Scholar 

  10. Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15. doi:10.1016/j.desal.2012.05.011

    CAS  Google Scholar 

  11. Rosales E, Pazos M, Sanromán MA (2012) Advances in the electro-Fenton process for remediation of recalcitrant organic compounds. Chem Eng Technol 35(4):609–617. doi:10.1002/ceat.201100321

    CAS  Google Scholar 

  12. Sires I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. doi:10.1016/j.envint.2011.07.012

    CAS  Google Scholar 

  13. Deng Q, Li X, Zuo J, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195(4):1130–1135. doi:10.1016/j.jpowsour.2009.08.092

    CAS  Google Scholar 

  14. González-García J, Bonete P, Expósito E, Montiel V, Aldaz A, Torregrosa-Maciá R (1999) Characterization of a carbon felt electrode structural and physical properties. J Mater Chem 9:419–426

    Google Scholar 

  15. Li XG, Huang KL, Liu SQ, Tan N, Chen LQ (2007) Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application. Trans Nonferrous Metals Soc China 17(1):195–199. doi:10.1016/s1003-6326(07)60071-5

    CAS  Google Scholar 

  16. Zhang Z, Xi J, Zhou H, Qiu X (2016) KOH etched graphite felt with improved wettability and activity for vanadium flow batteries. Electrochim Acta 218:15–23. doi:10.1016/j.electacta.2016.09.099

    CAS  Google Scholar 

  17. Ding C, Zhang H, Li X, Liu T, Xing F (2013) Vanadium flow battery for energy storage: prospects and challenges. J Phys Chem Lett 4(8):1281–1294. doi:10.1021/jz4001032

    CAS  Google Scholar 

  18. Hidalgo D, Tommasi T, Bocchini S, Chiolerio A, Chiodoni A, Mazzarino I, Ruggeri B (2016) Surface modification of commercial carbon felt used as anode for microbial fuel cells. Energy 99:193–201. doi:10.1016/j.energy.2016.01.039

    CAS  Google Scholar 

  19. Bianting S, Kazacos MS (1992) Chemical modification of graphite electrode materials for vanadium redox flow battery application – Part II: Acid treatments. Electrochim Acta 37(13):2459–2465

    Google Scholar 

  20. Flox C, Rubio-García J, Skoumal M, Andreu T, Morante JR (2013) Thermo–chemical treatments based on NH3/O2 for improved graphite-based fiber electrodes in vanadium redox flow batteries. Carbon 60:280–288. doi:10.1016/j.carbon.2013.04.038

    CAS  Google Scholar 

  21. Tang X, Guo K, Li H, Du Z, Tian J (2011) Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour Technol 102(3):3558–3560. doi:10.1016/j.biortech.2010.09.022

    CAS  Google Scholar 

  22. Zhou L, Hu Z, Zhang C, Bi Z, Jin T, Zhou M (2013) Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Sep Purif Technol 111:131–136. doi:10.1016/j.seppur.2013.03.038

    CAS  Google Scholar 

  23. Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, Li W, Hong M (2014) Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6(12):6590–6602. doi:10.1039/c4nr00348a

    CAS  Google Scholar 

  24. Zhong S, Padeste C, Kazacos M, Skyllas-Kazacos M (1993) Comparison of the physical, chemical and electrochemical properties of rayon- and polyacrylonitrile-based graphite felt electrodes. J Power Sources 45:29–41

    CAS  Google Scholar 

  25. He Z, Shi L, Shen J, He Z, Liu S (2015) Effects of nitrogen doping on the electrochemical performance of graphite felts for vanadium redox flow batteries. Int J Energy Res 39(5):709–716. doi:10.1002/er.3291

    CAS  Google Scholar 

  26. Wu T, Huang K, Liu S, Zhuang S, Fang D, Li S, Lu D, Su A (2011) Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery. J Solid State Electrochem 16(2):579–585. doi:10.1007/s10008-011-1383-y

    Google Scholar 

  27. Dixon D, Babu DJ, Langner J, Bruns M, Pfaffmann L, Bhaskar A, Schneider JJ, Scheiba F, Ehrenberg H (2016) Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application. J Power Sources 332:240–248. doi:10.1016/j.jpowsour.2016.09.070

    CAS  Google Scholar 

  28. Wang Y, Chen Z, Yu S, Saeed MU, Luo R (2016) Preparation and characterization of new-type high-temperature vacuum insulation composites with graphite felt core material. Mater Des 99:369–377. doi:10.1016/j.matdes.2016.03.083

    CAS  Google Scholar 

  29. Chen JZ, Liao WY, Hsieh WY, Hsu CC, Chen YS (2015) All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets. J Power Sources 274:894–898. doi:10.1016/j.jpowsour.2014.10.097

    CAS  Google Scholar 

  30. Shao Y, Wang X, Engelhard M, Wang C, Dai S, Liu J, Yang Z, Lin Y (2010) Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. J Power Sources 195(13):4375–4379. doi:10.1016/j.jpowsour.2010.01.015

    CAS  Google Scholar 

  31. Ma K, Cheng JP, Liu F, Zhang X (2016) Co-Fe layered double hydroxides nanosheets vertically grown on carbon fiber cloth for electrochemical capacitors. J Alloys Compd 679:277–284. doi:10.1016/j.jallcom.2016.04.059

    CAS  Google Scholar 

  32. Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 48(42):7752–7777. doi:10.1002/anie.200901678

    CAS  Google Scholar 

  33. Jang SK, Jeon J, Jeon SM, Song YJ, Lee S (2015) Effects of dielectric material properties on graphene transistor performance. Solid State Electron 109:8–11. doi:10.1016/j.sse.2015.03.003

    CAS  Google Scholar 

  34. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39(8):3157–3180. doi:10.1039/b923596e

    CAS  Google Scholar 

  35. Zhang C, Liang P, Yang X, Jiang Y, Bian Y, Chen C, Zhang X, Huang X (2016) Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron 81:32–38. doi:10.1016/j.bios.2016.02.051

    CAS  Google Scholar 

  36. Chavez-Valdez A, Shaffer MS, Boccaccini AR (2013) Applications of graphene electrophoretic deposition. A review. J Phys Chem B 117(6):1502–1515. doi:10.1021/jp3064917

    CAS  Google Scholar 

  37. González Z, Flox C, Blanco C, Granda M, Morante JR, Menéndez R, Santamaría R (2016) Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. J Power Sources. doi:10.1016/j.jpowsour.2016.10.069

  38. Sehrawat P, Julien C, Islam SS (2016) Carbon nanotubes in Li-ion batteries: a review. Mater Sci Eng B 213:12–40. doi:10.1016/j.mseb.2016.06.013

    CAS  Google Scholar 

  39. Cui H, Qian Y, An H, Sun C, Zhai J, Li Q (2012) Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor. Water Res 46(12):3943–3950. doi:10.1016/j.watres.2012.04.039

    CAS  Google Scholar 

  40. Wang S, Zhao X, Cochell T, Manthiram A (2012) Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries. J Phys Chem Lett 3(16):2164–2167. doi:10.1021/jz3008744

    CAS  Google Scholar 

  41. Rosolen JM, Matsubara EY, Marchesin MS, Lala SM, Montoro LA, Tronto S (2006) Carbon nanotube/felt composite electrodes without polymer binders. J Power Sources 162(1):620–628. doi:10.1016/j.jpowsour.2006.06.087

    CAS  Google Scholar 

  42. Wang K, Chizari K, Liu Y, Janowska I, Moldovan SM, Ersen O, Bonnefont A, Savinova ER, Nguyen LD, Pham-Huu C (2011) Catalytic synthesis of a high aspect ratio carbon nanotubes bridging carbon felt composite with improved electrical conductivity and effective surface area. Appl Catal A Gen 392(1–2):238–247. doi:10.1016/j.apcata.2010.11.014

    CAS  Google Scholar 

  43. Mauricio Rosolen J, Patrick Poá CH, Tronto S, Marchesin MS, Silva SRP (2006) Electron field emission of carbon nanotubes on carbon felt. Chem Phys Lett 424(1–3):151–155. doi:10.1016/j.cplett.2006.04.071

    Google Scholar 

  44. Rosolen JM, Tronto S, Marchesin MS, Almeida EC, Ferreira NG, Patrick Poá CH, Silva SRP (2006) Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts. Appl Phys Lett 88(8):083116. doi:10.1063/1.2178247

    Google Scholar 

  45. Song Q, Li K, Li H, Fu Q (2013) Increasing the tensile property of unidirectional carbon/carbon composites by grafting carbon nanotubes onto carbon fibers by electrophoretic deposition. J Mater Sci Technol 29(8):711–714. doi:10.1016/j.jmst.2013.05.015

    CAS  Google Scholar 

  46. An Q, Rider AN, Thostenson ET (2012) Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50(11):4130–4143. doi:10.1016/j.carbon.2012.04.061

    CAS  Google Scholar 

  47. Li KZ, Li L, Li HJ, Song Q, Lu JH, Fu QG (2014) Electrophoretic deposition of carbon nanotubes onto carbon fiber felt for production of carbon/carbon composites with improved mechanical and thermal properties. Vacuum 104:105–110. doi:10.1016/j.vacuum.2014.01.024

    Google Scholar 

  48. Wei G, Jia C, Liu J, Yan C (2012) Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application. J Power Sources 220:185–192. doi:10.1016/j.jpowsour.2012.07.081

    CAS  Google Scholar 

  49. Li W, Liu J, Yan C (2011) Multi-walled carbon nanotubes used as an electrode reaction catalyst for /VO2+ for a vanadium redox flow battery. Carbon 49(11):3463–3470. doi:10.1016/j.carbon.2011.04.045

    CAS  Google Scholar 

  50. Chandrasekhar P, Naishadham K (1999) Broadband microwave absorption and shielding properties of a poly(aniline). Synth Met 105:115–120

    CAS  Google Scholar 

  51. Lin Y, Cui X, Bontha J (2006) Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal. Environ Sci Technol 40(12):4004–4009

    CAS  Google Scholar 

  52. Zhang G, Yang F, Gao M, Liu L (2008) Electrocatalytic behavior of the bare and the anthraquinonedisuldonate/polypyrrole composite film modified graphite cathodes in the electro-Fenton system. J Phys Chem C 112:8957–8962

    CAS  Google Scholar 

  53. Hasebe Y, Wang Y, Fukuoka K (2011) Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis. J Environ Sci 23(6):1050–1056. doi:10.1016/s1001-0742(10)60513-x

    CAS  Google Scholar 

  54. Feng C, Li F, Liu H, Lang X, Fan S (2010) A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process. Electrochim Acta 55(6):2048–2054. doi:10.1016/j.electacta.2009.11.033

    CAS  Google Scholar 

  55. Jiang X, Lou S, Chen D, Shen J, Han W, Sun X, Li J, Wang L (2015) Fabrication of polyaniline/graphene oxide composite for graphite felt electrode modification and its performance in the bioelectrochemical system. J Electroanal Chem 744:95–100. doi:10.1016/j.jelechem.2015.03.001

    CAS  Google Scholar 

  56. Li C, Ding L, Cui H, Zhang L, Xu K, Ren H (2012) Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour Technol 116:459–465. doi:10.1016/j.biortech.2012.03.115

    CAS  Google Scholar 

  57. Mu S (2004) Electrochemical copolymerization of aniline and o-aminophenol. Synth Met 143(3):259–268. doi:10.1016/j.synthmet.2003.12.008

    CAS  Google Scholar 

  58. Lv Z, Chen Y, Wei H, Li F, Hu Y, Wei C, Feng C (2013) One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim Acta 111:366–373. doi:10.1016/j.electacta.2013.08.022

    CAS  Google Scholar 

  59. Hui J, Jiang X, Xie H, Chen D, Shen J, Sun X, Han W, Li J, Wang L (2016) Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system. Electrochim Acta 190:16–24. doi:10.1016/j.electacta.2015.12.119

    CAS  Google Scholar 

  60. Cui H-F, Du L, Guo P-B, Zhu B, Luong JHT (2015) Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources 283:46–53. doi:10.1016/j.jpowsour.2015.02.088

    CAS  Google Scholar 

  61. Walcarius A (1999) Zeolite-modified electrodes in electroanalytical chemistry. Anal Chim Acta 384:1–16

    CAS  Google Scholar 

  62. Wu X, Tong F, Yong X, Zhou J, Zhang L, Jia H, Wei P (2016) Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells. J Hazard Mater 308:303–311. doi:10.1016/j.jhazmat.2016.01.070

    CAS  Google Scholar 

  63. Wu X-Y, Tong F, Song T-S, Gao X-Y, Xie J-J, Zhou CC, Zhang L-X, Wei P (2015) Effect of zeolite-coated anode on the performance of microbial fuel cells. J Chem Technol Biotechnol 90(1):87–92. doi:10.1002/jctb.4290

    CAS  Google Scholar 

  64. Haghighi B, Hamidi H, Gorton L (2010) Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensors Actuators B Chem 147(1):270–276. doi:10.1016/j.snb.2010.03.020

    CAS  Google Scholar 

  65. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21(3):389–407. doi:10.1016/j.bios.2004.12.001

    CAS  Google Scholar 

  66. Ellis D, Eckhoff M, Neff VD (1981) Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian Blue. J Phys Chem 85(9):1225–1231

    CAS  Google Scholar 

  67. Ricci F, Amine A, Palleschi G, Moscone D (2003) Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18(2–3):165–174

    CAS  Google Scholar 

  68. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian Blue. J Electrochem Soc 125(6):886–887

    CAS  Google Scholar 

  69. DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv Funct Mater 14:224–232

    CAS  Google Scholar 

  70. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19:162–168

    CAS  Google Scholar 

  71. Pyrasch M, Tieke B (2001) Electro- and photoresponsive films of Prussian blue prepared upon multiple sequential adsorption. Langmuir 17:7706–7709

    CAS  Google Scholar 

  72. Zhou P, Xue D, Luo H, Chen X (2002) Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowire arrays. Nano Lett 2:845–847

    CAS  Google Scholar 

  73. Wang L, Tricard S, Cao L, Liang Y, Zhao J, Fang J, Shen W (2015) Prussian blue/1-butyl-3-methylimidazolium tetrafluoroborate – graphite felt electrodes for efficient electrocatalytic determination of nitrite. Sensors Actuators B Chem 214:70–75. doi:10.1016/j.snb.2015.03.009

    CAS  Google Scholar 

  74. Le TXH, Esmilaire R, Drobek M, Bechelany M, Vallicari C, Nguyen DL, Julbe A, Tingry S, Cretin M (2016) Design of novel Fuel Cell-Fenton system a smart approach to zero energy depollution. J Mater Chem A 4:17686. doi:10.1039/C6TA05443A

    Google Scholar 

  75. Li W, Liu J, Yan C (2012) The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery. Electrochim Acta 79:102–108. doi:10.1016/j.electacta.2012.06.109

    CAS  Google Scholar 

  76. Petrucci E, Da Pozzo A, Di Palma L (2016) On the ability to electrogenerate hydrogen peroxide and to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes. Chem Eng J 283:750–758. doi:10.1016/j.cej.2015.08.030

    CAS  Google Scholar 

  77. Le TXH, Bechelany M, Lacour S, Oturan N, Oturan MA, Cretin M (2015) High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94:1003–1011. doi:10.1016/j.carbon.2015.07.086

    CAS  Google Scholar 

  78. Hammami S, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2007) Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: application of the experimental design methodology. J Electroanal Chem 610(1):75–84. doi:10.1016/j.jelechem.2007.07.004

    CAS  Google Scholar 

  79. Abdessalem AK, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2008) Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl Catal B Environ 78(3–4):334–341. doi:10.1016/j.apcatb.2007.09.032

    CAS  Google Scholar 

  80. Mousset E, Oturan N, van Hullebusch ED, Guibaud G, Esposito G, Oturan MA (2014) Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process – study of soil washing recycling possibilities and environmental impact. Water Res 48:306–316. doi:10.1016/j.watres.2013.09.044

    CAS  Google Scholar 

  81. Le TXH, Nguyen DL, Yacouba ZA, Zoungrana L, Avril F, Petit E, Mendret J, Bonniol V, Bechelany M, Lacour S, Lesage G, Cretin M (2016) Toxicity removal assessments related to degradation pathways of azo dyes: toward an optimization of electro-Fenton treatment. Chemosphere 161:308–318. doi:10.1016/j.chemosphere.2016.06.108

    CAS  Google Scholar 

  82. Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482

    CAS  Google Scholar 

  83. Oturan MA, Oturan N, Lahitte C, Trevin S (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent application to the mineralization of an organic micropollutant, pentachlorophenol. J Electroanal Chem 507:96–102

    CAS  Google Scholar 

  84. Edelahi MC, Oturan N, Oturan MA, Padellec Y, Bermond A, Kacemi KE (2003) Degradation of diuron by the electro-Fenton process. Environ Chem Lett 1(4):233–236

    Google Scholar 

  85. Panizza M, Oturan MA (2011) Degradation of alizarin red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56(20):7084–7087. doi:10.1016/j.electacta.2011.05.105

    CAS  Google Scholar 

  86. Sires I, Guivarch E, Oturan N, Oturan MA (2008) Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere 72(4):592–600. doi:10.1016/j.chemosphere.2008.03.010

    CAS  Google Scholar 

  87. Ozcan A, Oturan MA, Oturan N, Sahin Y (2009) Removal of acid Orange 7 from water by electrochemically generated Fenton’s reagent. J Hazard Mater 163(2–3):1213–1220. doi:10.1016/j.jhazmat.2008.07.088

    Google Scholar 

  88. Hammami S, Bellakhal N, Oturan N, Oturan MA, Dachraoui M (2008) Degradation of acid Orange 7 by electrochemically generated (*)OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: a mechanistic study. Chemosphere 73(5):678–684. doi:10.1016/j.chemosphere.2008.07.010

    CAS  Google Scholar 

  89. Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83(1–2):140–149. doi:10.1016/j.apcatb.2008.02.011

    CAS  Google Scholar 

  90. Elaoud SC, Panizza M, Cerisola G, Mhiri T (2012) Coumaric acid degradation by electro-Fenton process. J Electroanal Chem 667:19–23. doi:10.1016/j.jelechem.2011.12.013

    CAS  Google Scholar 

  91. Hanna K, Chiron S, Oturan MA (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res 39(12):2763–2773. doi:10.1016/j.watres.2005.04.057

    CAS  Google Scholar 

  92. Gözmen B, Oturan MA, Oturan N, Erbatur O (2003) Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent. Environ Sci Technol 37(16):3716–3723

    Google Scholar 

  93. Irmak S, Yavuz HI, Erbatur O (2006) Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes. Appl Catal B Environ 63(3–4):243–248. doi:10.1016/j.apcatb.2005.10.008

    CAS  Google Scholar 

  94. Aaron JJ, Oturan MA (2001) New photochemical and electrochemical methods for the degradation of pesticides in aqueous media. Environmental applications. Turk J Chem 25:509–520

    CAS  Google Scholar 

  95. Oturan MA, Aaron JJ, Oturan N, Pinson J (1999) Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method. Pestic Sci 55:558–562

    CAS  Google Scholar 

  96. Diagne M, Oturan N, Oturan MA (2007) Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66(5):841–848. doi:10.1016/j.chemosphere.2006.06.033

    CAS  Google Scholar 

  97. Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B Environ 72(3–4):382–394. doi:10.1016/j.apcatb.2006.11.016

    Google Scholar 

  98. Huguenot D, Mousset E, van Hullebusch ED, Oturan MA (2015) Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J Environ Manag 153:40–47. doi:10.1016/j.jenvman.2015.01.037

    CAS  Google Scholar 

  99. Mousset E, Huguenot D, van Hullebusch ED, Oturan N, Guibaud G, Esposito G, Oturan MA (2016) Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry. Environ Pollut 211:354–362. doi:10.1016/j.envpol.2016.01.021

    CAS  Google Scholar 

  100. Lin H, Zhang H, Wang X, Wang L, Wu J (2014) Electro-Fenton removal of Orange II in a divided cell: reaction mechanism, degradation pathway and toxicity evolution. Sep Purif Technol 122:533–540. doi:10.1016/j.seppur.2013.12.010

    CAS  Google Scholar 

  101. Mousset E, Frunzo L, Esposito G, van Hullebusch ED, Oturan N, Oturan MA (2016) A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study. Appl Catal B Environ 180:189–198. doi:10.1016/j.apcatb.2015.06.014

    CAS  Google Scholar 

  102. Oturan MA, Pimentel M, Oturan N, Sirés I (2008) Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment. Electrochim Acta 54(2):173–182. doi:10.1016/j.electacta.2008.08.012

    CAS  Google Scholar 

  103. Lin H, Oturan N, Wu J, Zhang H, Oturan MA (2017) Cold incineration of sucralose in aqueous solution by electro-Fenton process. Sep Purif Technol 173:218–225. doi:10.1016/j.seppur.2016.09.028

    CAS  Google Scholar 

  104. Le TXH, Bechelany M, Champavert J, Cretin M (2015) A highly active based graphene cathode for electro-Fenton reaction. RSC Adv 5:42536–42539. doi:10.1039/C5RA04811G

    CAS  Google Scholar 

  105. Le TXH, Charmette C, Bechelany M, Cretin M (2016) Facile preparation of porous carbon cathode to eliminate Paracetamol in aqueous medium using electro-Fenton system. Electrochim Acta 188:378–384. doi:10.1016/j.electacta.2015.12.005

    CAS  Google Scholar 

  106. Pajootan E, Arami M, Rahimdokht M (2014) Discoloration of wastewater in a continuous electro-Fenton process using modified graphite electrode with multi-walled carbon nanotubes/surfactant. Sep Purif Technol 130:34–44. doi:10.1016/j.seppur.2014.04.025

    CAS  Google Scholar 

  107. Miao J, Zhu H, Tang Y, Chen Y, Wan P (2014) Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem Eng J 250:312–318. doi:10.1016/j.cej.2014.03.043

    CAS  Google Scholar 

  108. Zhou L, Zhou M, Hu Z, Bi Z, Serrano KG (2014) Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochim Acta 140:376–383. doi:10.1016/j.electacta.2014.04.090

    CAS  Google Scholar 

  109. Popuri SR, Chang C-Y, Xu J (2011) A study on different addition approach of Fenton’s reagent for DCOD removal from ABS wastewater. Desalination 277(1–3):141–146. doi:10.1016/j.desal.2011.04.017

    CAS  Google Scholar 

  110. Guo S, Zhang G, Wang J (2014) Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: characterization, process optimization and mechanism. J Colloid Interface Sci 433:1–8. doi:10.1016/j.jcis.2014.07.017

    CAS  Google Scholar 

  111. Hassan H, Hameed BH (2011) Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chem Eng J 171(3):912–918. doi:10.1016/j.cej.2011.04.040

    CAS  Google Scholar 

  112. Sánchez-Sánchez CM, Expósito E, Casado J, Montiel V (2007) Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process. Electrochem Commun 9(1):19–24. doi:10.1016/j.elecom.2006.08.023

    Google Scholar 

  113. Barhoumi N, Labiadh L, Oturan MA, Oturan N, Gadri A, Ammar S, Brillas E (2015) Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 141:250–257. doi:10.1016/j.chemosphere.2015.08.003

    CAS  Google Scholar 

  114. Labiadh L, Oturan MA, Panizza M, Hamadi NB, Ammar S (2015) Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J Hazard Mater 297:34–41. doi:10.1016/j.jhazmat.2015.04.062

    CAS  Google Scholar 

  115. Iglesias O, Gómez J, Pazos M, Sanromán MÁ (2014) Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads. Appl Catal B Environ 144:416–424. doi:10.1016/j.apcatb.2013.07.046

    CAS  Google Scholar 

  116. Rosales E, Iglesias O, Pazos M, Sanroman MA (2012) Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. J Hazard Mater 213–214:369–377. doi:10.1016/j.jhazmat.2012.02.005

    Google Scholar 

  117. Özcan A, Atılır Özcan A, Demirci Y, Şener E (2017) Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Appl Catal B Environ 200:361–371. doi:10.1016/j.apcatb.2016.07.018

    Google Scholar 

  118. Li Y, Lu A, Ding H, Wang X, Wang C, Zeng C, Yan Y (2010) Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate. Electrochem Commun 12(7):944–947. doi:10.1016/j.elecom.2010.04.027

    CAS  Google Scholar 

  119. Ganiyu SO, Le TXH, Bechelany M, Esposito G, van Hullebusch ED, Oturan MA, Cretin M (2017) A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J Mater Chem A 5:3655. doi:10.1039/C6TA09100H

    CAS  Google Scholar 

  120. Xu N, Zhang Y, Tao H, Zhou S, Zeng Y (2013) Bio-electro-Fenton system for enhanced estrogens degradation. Bioresour Technol 138:136–140. doi:10.1016/j.biortech.2013.03.157

    CAS  Google Scholar 

  121. Birjandi N, Younesi H, Ghoreyshi AA, Rahimnejad M (2016) Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system. J Environ Manag 180:390–400. doi:10.1016/j.jenvman.2016.05.073

    CAS  Google Scholar 

  122. Zhuang L, Zhou S, Yuan Y, Liu M, Wang Y (2010) A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation. Chem Eng J 163(1–2):160–163. doi:10.1016/j.cej.2010.07.039

    CAS  Google Scholar 

  123. Wang XQ, Liu CP, Yuan Y, Li FB (2014) Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. J Hazard Mater 275:200–209. doi:10.1016/j.jhazmat.2014.05.003

    CAS  Google Scholar 

  124. Feng CH, Li FB, Mai HJ, Li XZ (2010) Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol 44(5):1875–1880

    CAS  Google Scholar 

  125. Plakas KV, Sklari SD, Yiankakis DA, Sideropoulos GT, Zaspalis VT, Karabelas AJ (2016) Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: pilot-scale studies. Water Res 91:183–194. doi:10.1016/j.watres.2016.01.013

    CAS  Google Scholar 

  126. Barhoumi N, Olvera-Vargas H, Oturan N, Huguenot D, Gadri A, Ammar S, Brillas E, Oturan MA (2017) Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Appl Catal B Environ 209:637–647. doi:10.1016/j.apcatb.2017.03.034

    CAS  Google Scholar 

  127. Ren G, Zhou M, Liu M, Ma L, Yang H (2016) A novel vertical-flow electro-Fenton reactor for organic wastewater treatment. Chem Eng J 298:55–67. doi:10.1016/j.cej.2016.04.011

    CAS  Google Scholar 

  128. Smith NAS, Knoerzer K, Ramos ÁM (2014) Evaluation of the differences of process variables in vertical and horizontal configurations of High Pressure Thermal (HPT) processing systems through numerical modelling. Innovative Food Sci Emerg Technol 22:51–62. doi:10.1016/j.ifset.2013.12.021

    Google Scholar 

  129. Rosales E, Pazos M, Longo MA, Sanromán MA (2009) Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chem Eng J 155(1–2):62–67. doi:10.1016/j.cej.2009.06.028

    CAS  Google Scholar 

  130. Yu F, Zhou M, Zhou L, Peng R (2014) A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ Sci Technol Lett 1(7):320–324. doi:10.1021/ez500178p

    CAS  Google Scholar 

  131. Zhang L, Yin X, Li SFY (2015) Bio-electrochemical degradation of paracetamol in a microbial fuel cell-Fenton system. Chem Eng J 276:185–192. doi:10.1016/j.cej.2015.04.065

    CAS  Google Scholar 

  132. Zhuang L, Zhou S, Li Y, Liu T, Huang D (2010) In situ Fenton-enhanced cathodic reaction for sustainable increased electricity generation in microbial fuel cells. J Power Sources 195(5):1379–1382. doi:10.1016/j.jpowsour.2009.09.011

    CAS  Google Scholar 

  133. Zhu X, Ni J (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem Commun 11(2):274–277. doi:10.1016/j.elecom.2008.11.023

    CAS  Google Scholar 

  134. Luo Y, Zhang R, Liu G, Li J, Qin B, Li M, Chen S (2011) Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour Technol 102(4):3827–3832. doi:10.1016/j.biortech.2010.11.121

    CAS  Google Scholar 

  135. Zhu X, Logan BE (2013) Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. J Hazard Mater 252–253:198–203. doi:10.1016/j.jhazmat.2013.02.051

    Google Scholar 

  136. Espinoza C, Romero J, Villegas L, Cornejo-Ponce L, Salazar R (2016) Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant. J Hazard Mater 319:24–33. doi:10.1016/j.jhazmat.2016.03.003

    CAS  Google Scholar 

  137. Garcia-Segura S, Brillas E (2014) Advances in solar photoelectro-Fenton: Decolorization and mineralization of the direct yellow 4 diazo dye using an autonomous solar pre-pilot plant. Electrochim Acta 140:384–395. doi:10.1016/j.electacta.2014.04.009

    CAS  Google Scholar 

  138. Garcia-Segura S, Cavalcanti EB, Brillas E (2014) Mineralization of the antibiotic chloramphenicol by solar photoelectro-Fenton. Appl Catal B Environ 144:588–598. doi:10.1016/j.apcatb.2013.07.071

    CAS  Google Scholar 

  139. El-Ghenymy A, Cabot PL, Centellas F, Garrido JA, Rodriguez RM, Arias C, Brillas E (2013) Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell. Chemosphere 91(9):1324–1331. doi:10.1016/j.chemosphere.2013.03.005

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikhael Bechelany or Marc Cretin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Le, T.X.H., Bechelany, M., Cretin, M. (2017). Advances in Carbon Felt Material for Electro-Fenton Process. In: Zhou, M., Oturan, M., Sirés, I. (eds) Electro-Fenton Process. The Handbook of Environmental Chemistry, vol 61. Springer, Singapore. https://doi.org/10.1007/698_2017_55

Download citation

Publish with us

Policies and ethics