Advertisement

Advances in Carbon Felt Material for Electro-Fenton Process

  • Thi Xuan Huong Le
  • Mikhael BechelanyEmail author
  • Marc CretinEmail author
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)

Abstract

In electro-Fenton process, carbon-based materials, particularly 3D carbon felt, are the best choices for the cathodic electrodes because of several advantages such as low cost, excellent electrolytic efficiency, high surface area, and porosity. In this chapter, various aspects of this material are discussed in detail. This chapter is divided into three main sections, including (1) characterization of carbon felt (CF), (2) modification of CF, and (3) application of CF in electro-Fenton (EF) process to remove biorefractory pollutants. First of all, the typical characteristics of CF such as morphology, porosity, and conductivity are discussed. Next, in the modification section, we introduce different methods to improve the performance of CF. We especially focus on the surface area and electrochemical activity toward electrodes applications. Finally, both modified and non-modified CF is used as cathode materials for EF systems like homogeneous, heterogeneous, hybrid, or pilot-scale types.

Keywords

Carbon felt Conductivity Electrochemical activity Electro-Fenton process Hydrogen peroxide production Modification Surface area 

Abbreviations

AHPS

4-Amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid

ALD

Atomic Layer Deposition

AO7

Acid orange 7

APPJ

Atmospheric Pressure Plasma Jet

AQDS

Anthraquinone-2,6-disulfonate

BDD

Boron-doped diamond

BEF

Bio-electro-Fenton

CF

Carbon felt

CNT

Carbon nanotube

CTAB

Cetyl trimethylammonium bromide

CV

Cyclic voltammogram

CVD

Chemical vapor deposition

DCF

Diclofenac

DMF

N,N-dimethyl formamide

DO 61

Direct orange 61

EC

Energy efficiency

EF

Electro-Fenton

ENXN

Enoxacin

EPD

Electrophoretic deposition

FeAB

Iron alginate gel beads

GF

Graphite felt

GO

Graphene oxide

LDH

Layered double hydroxide

MCE

Mineralization current efficiency

MCF

Microbial fuel cell

MO

Methyl orange

N-doped

Nitrogen-doped

ORR

Oxygen reduction reaction

PAH

Polycyclic aromatic hydrocarbon

PAN-CF

PolyAcryloNitrile-Carbon Felt

PAN-GF

Polyacrylonitrile-graphite felt

PANi

Polyaniline

PB

Prussian blue

PCOC

4-Chloro-2-methylphenol

PEM

Proton Exchange Membrane

POP

Persistent Organic Pollutant

PPy

Polypyrrole

RF

Radiofrequency

rGO

Reduced graphene oxide

RTD

Residence Time Distribution

SCEs

Saturated calomel electrode

SEM

Scanning Electron Microscopy

SPEF

Solar Photo-electro-Fenton

SWCNT

Single-walled carbon nanotube

TOC

Total organic carbon

TT

Thermal treatment

VRFE

Vanadium redox flow battery

XPS

X-ray photoelectron spectroscopy

ZIF

Zeolitic Imidazolate Framework

ZME

Zeolite-modified electrode

References

  1. 1.
    Smith REG, Davies TJ, Baynes NB, Nichols RJ (2015) The electrochemical characterisation of graphite felts. J Electroanal Chem 747:29–38. doi: 10.1016/j.jelechem.2015.03.029 Google Scholar
  2. 2.
    Di Blasi A, Di Blasi O, Briguglio N, Aricò AS, Sebastián D, Lázaro MJ, Monforte G, Antonucci V (2013) Investigation of several graphite-based electrodes for vanadium redox flow cell. J Power Sources 227:15–23. doi: 10.1016/j.jpowsour.2012.10.098 Google Scholar
  3. 3.
    Wang Y, Hasebe Y (2009) Carbon felt-based biocatalytic enzymatic flow-through detectors: chemical modification of tyrosinase onto amino-functionalized carbon felt using various coupling reagents. Talanta 79(4):1135–1141. doi: 10.1016/j.talanta.2009.02.028 Google Scholar
  4. 4.
    Han L, Tricard S, Fang J, Zhao J, Shen W (2013) Prussian blue @ platinum nanoparticles/graphite felt nanocomposite electrodes: application as hydrogen peroxide sensor. Biosens Bioelectron 43:120–124. doi: 10.1016/j.bios.2012.12.003 Google Scholar
  5. 5.
    Kim KJ, Kim Y-J, Kim J-H, Park M-S (2011) The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Mater Chem Phys 131(1–2):547–553. doi: 10.1016/j.matchemphys.2011.10.022 Google Scholar
  6. 6.
    González Z, Sánchez A, Blanco C, Granda M, Menéndez R, Santamaría R (2011) Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochem Commun 13(12):1379–1382. doi: 10.1016/j.elecom.2011.08.017 Google Scholar
  7. 7.
    Chakrabarti MH, Brandon NP, Hajimolana SA, Tariq F, Yufit V, Hashim MA, Hussain MA, Lowd CTJ, Aravind PV (2014) Application of carbon materials in redox flow batteries. J Power Sources 253:150–166. doi: 10.1016/j.jpowsour.2013.12.038 Google Scholar
  8. 8.
    Sun B, Kazacos MS (1992) Modification of graphite electrode materials for vanadium redox flow battery application – I. Thermal treatment. Electrochim Acta 37(7):1253–1260Google Scholar
  9. 9.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631Google Scholar
  10. 10.
    Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15. doi: 10.1016/j.desal.2012.05.011 Google Scholar
  11. 11.
    Rosales E, Pazos M, Sanromán MA (2012) Advances in the electro-Fenton process for remediation of recalcitrant organic compounds. Chem Eng Technol 35(4):609–617. doi: 10.1002/ceat.201100321 Google Scholar
  12. 12.
    Sires I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229. doi: 10.1016/j.envint.2011.07.012 Google Scholar
  13. 13.
    Deng Q, Li X, Zuo J, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195(4):1130–1135. doi: 10.1016/j.jpowsour.2009.08.092 Google Scholar
  14. 14.
    González-García J, Bonete P, Expósito E, Montiel V, Aldaz A, Torregrosa-Maciá R (1999) Characterization of a carbon felt electrode structural and physical properties. J Mater Chem 9:419–426Google Scholar
  15. 15.
    Li XG, Huang KL, Liu SQ, Tan N, Chen LQ (2007) Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application. Trans Nonferrous Metals Soc China 17(1):195–199. doi: 10.1016/s1003-6326(07)60071-5 Google Scholar
  16. 16.
    Zhang Z, Xi J, Zhou H, Qiu X (2016) KOH etched graphite felt with improved wettability and activity for vanadium flow batteries. Electrochim Acta 218:15–23. doi: 10.1016/j.electacta.2016.09.099 Google Scholar
  17. 17.
    Ding C, Zhang H, Li X, Liu T, Xing F (2013) Vanadium flow battery for energy storage: prospects and challenges. J Phys Chem Lett 4(8):1281–1294. doi: 10.1021/jz4001032 Google Scholar
  18. 18.
    Hidalgo D, Tommasi T, Bocchini S, Chiolerio A, Chiodoni A, Mazzarino I, Ruggeri B (2016) Surface modification of commercial carbon felt used as anode for microbial fuel cells. Energy 99:193–201. doi: 10.1016/j.energy.2016.01.039 Google Scholar
  19. 19.
    Bianting S, Kazacos MS (1992) Chemical modification of graphite electrode materials for vanadium redox flow battery application – Part II: Acid treatments. Electrochim Acta 37(13):2459–2465Google Scholar
  20. 20.
    Flox C, Rubio-García J, Skoumal M, Andreu T, Morante JR (2013) Thermo–chemical treatments based on NH3/O2 for improved graphite-based fiber electrodes in vanadium redox flow batteries. Carbon 60:280–288. doi: 10.1016/j.carbon.2013.04.038 Google Scholar
  21. 21.
    Tang X, Guo K, Li H, Du Z, Tian J (2011) Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour Technol 102(3):3558–3560. doi: 10.1016/j.biortech.2010.09.022 Google Scholar
  22. 22.
    Zhou L, Hu Z, Zhang C, Bi Z, Jin T, Zhou M (2013) Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Sep Purif Technol 111:131–136. doi: 10.1016/j.seppur.2013.03.038 Google Scholar
  23. 23.
    Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, Li W, Hong M (2014) Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6(12):6590–6602. doi: 10.1039/c4nr00348a Google Scholar
  24. 24.
    Zhong S, Padeste C, Kazacos M, Skyllas-Kazacos M (1993) Comparison of the physical, chemical and electrochemical properties of rayon- and polyacrylonitrile-based graphite felt electrodes. J Power Sources 45:29–41Google Scholar
  25. 25.
    He Z, Shi L, Shen J, He Z, Liu S (2015) Effects of nitrogen doping on the electrochemical performance of graphite felts for vanadium redox flow batteries. Int J Energy Res 39(5):709–716. doi: 10.1002/er.3291 Google Scholar
  26. 26.
    Wu T, Huang K, Liu S, Zhuang S, Fang D, Li S, Lu D, Su A (2011) Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery. J Solid State Electrochem 16(2):579–585. doi: 10.1007/s10008-011-1383-y Google Scholar
  27. 27.
    Dixon D, Babu DJ, Langner J, Bruns M, Pfaffmann L, Bhaskar A, Schneider JJ, Scheiba F, Ehrenberg H (2016) Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application. J Power Sources 332:240–248. doi: 10.1016/j.jpowsour.2016.09.070 Google Scholar
  28. 28.
    Wang Y, Chen Z, Yu S, Saeed MU, Luo R (2016) Preparation and characterization of new-type high-temperature vacuum insulation composites with graphite felt core material. Mater Des 99:369–377. doi: 10.1016/j.matdes.2016.03.083 Google Scholar
  29. 29.
    Chen JZ, Liao WY, Hsieh WY, Hsu CC, Chen YS (2015) All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets. J Power Sources 274:894–898. doi: 10.1016/j.jpowsour.2014.10.097 Google Scholar
  30. 30.
    Shao Y, Wang X, Engelhard M, Wang C, Dai S, Liu J, Yang Z, Lin Y (2010) Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. J Power Sources 195(13):4375–4379. doi: 10.1016/j.jpowsour.2010.01.015 Google Scholar
  31. 31.
    Ma K, Cheng JP, Liu F, Zhang X (2016) Co-Fe layered double hydroxides nanosheets vertically grown on carbon fiber cloth for electrochemical capacitors. J Alloys Compd 679:277–284. doi: 10.1016/j.jallcom.2016.04.059 Google Scholar
  32. 32.
    Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 48(42):7752–7777. doi: 10.1002/anie.200901678 Google Scholar
  33. 33.
    Jang SK, Jeon J, Jeon SM, Song YJ, Lee S (2015) Effects of dielectric material properties on graphene transistor performance. Solid State Electron 109:8–11. doi: 10.1016/j.sse.2015.03.003 Google Scholar
  34. 34.
    Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39(8):3157–3180. doi: 10.1039/b923596e Google Scholar
  35. 35.
    Zhang C, Liang P, Yang X, Jiang Y, Bian Y, Chen C, Zhang X, Huang X (2016) Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron 81:32–38. doi: 10.1016/j.bios.2016.02.051 Google Scholar
  36. 36.
    Chavez-Valdez A, Shaffer MS, Boccaccini AR (2013) Applications of graphene electrophoretic deposition. A review. J Phys Chem B 117(6):1502–1515. doi: 10.1021/jp3064917 Google Scholar
  37. 37.
    González Z, Flox C, Blanco C, Granda M, Morante JR, Menéndez R, Santamaría R (2016) Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. J Power Sources. doi: 10.1016/j.jpowsour.2016.10.069
  38. 38.
    Sehrawat P, Julien C, Islam SS (2016) Carbon nanotubes in Li-ion batteries: a review. Mater Sci Eng B 213:12–40. doi: 10.1016/j.mseb.2016.06.013 Google Scholar
  39. 39.
    Cui H, Qian Y, An H, Sun C, Zhai J, Li Q (2012) Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor. Water Res 46(12):3943–3950. doi: 10.1016/j.watres.2012.04.039 Google Scholar
  40. 40.
    Wang S, Zhao X, Cochell T, Manthiram A (2012) Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries. J Phys Chem Lett 3(16):2164–2167. doi: 10.1021/jz3008744 Google Scholar
  41. 41.
    Rosolen JM, Matsubara EY, Marchesin MS, Lala SM, Montoro LA, Tronto S (2006) Carbon nanotube/felt composite electrodes without polymer binders. J Power Sources 162(1):620–628. doi: 10.1016/j.jpowsour.2006.06.087 Google Scholar
  42. 42.
    Wang K, Chizari K, Liu Y, Janowska I, Moldovan SM, Ersen O, Bonnefont A, Savinova ER, Nguyen LD, Pham-Huu C (2011) Catalytic synthesis of a high aspect ratio carbon nanotubes bridging carbon felt composite with improved electrical conductivity and effective surface area. Appl Catal A Gen 392(1–2):238–247. doi: 10.1016/j.apcata.2010.11.014 Google Scholar
  43. 43.
    Mauricio Rosolen J, Patrick Poá CH, Tronto S, Marchesin MS, Silva SRP (2006) Electron field emission of carbon nanotubes on carbon felt. Chem Phys Lett 424(1–3):151–155. doi: 10.1016/j.cplett.2006.04.071 Google Scholar
  44. 44.
    Rosolen JM, Tronto S, Marchesin MS, Almeida EC, Ferreira NG, Patrick Poá CH, Silva SRP (2006) Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts. Appl Phys Lett 88(8):083116. doi: 10.1063/1.2178247 Google Scholar
  45. 45.
    Song Q, Li K, Li H, Fu Q (2013) Increasing the tensile property of unidirectional carbon/carbon composites by grafting carbon nanotubes onto carbon fibers by electrophoretic deposition. J Mater Sci Technol 29(8):711–714. doi: 10.1016/j.jmst.2013.05.015 Google Scholar
  46. 46.
    An Q, Rider AN, Thostenson ET (2012) Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50(11):4130–4143. doi: 10.1016/j.carbon.2012.04.061 Google Scholar
  47. 47.
    Li KZ, Li L, Li HJ, Song Q, Lu JH, Fu QG (2014) Electrophoretic deposition of carbon nanotubes onto carbon fiber felt for production of carbon/carbon composites with improved mechanical and thermal properties. Vacuum 104:105–110. doi: 10.1016/j.vacuum.2014.01.024 Google Scholar
  48. 48.
    Wei G, Jia C, Liu J, Yan C (2012) Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application. J Power Sources 220:185–192. doi: 10.1016/j.jpowsour.2012.07.081 Google Scholar
  49. 49.
    Li W, Liu J, Yan C (2011) Multi-walled carbon nanotubes used as an electrode reaction catalyst for /VO2+ for a vanadium redox flow battery. Carbon 49(11):3463–3470. doi: 10.1016/j.carbon.2011.04.045 Google Scholar
  50. 50.
    Chandrasekhar P, Naishadham K (1999) Broadband microwave absorption and shielding properties of a poly(aniline). Synth Met 105:115–120Google Scholar
  51. 51.
    Lin Y, Cui X, Bontha J (2006) Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal. Environ Sci Technol 40(12):4004–4009Google Scholar
  52. 52.
    Zhang G, Yang F, Gao M, Liu L (2008) Electrocatalytic behavior of the bare and the anthraquinonedisuldonate/polypyrrole composite film modified graphite cathodes in the electro-Fenton system. J Phys Chem C 112:8957–8962Google Scholar
  53. 53.
    Hasebe Y, Wang Y, Fukuoka K (2011) Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis. J Environ Sci 23(6):1050–1056. doi: 10.1016/s1001-0742(10)60513-x Google Scholar
  54. 54.
    Feng C, Li F, Liu H, Lang X, Fan S (2010) A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fenton process. Electrochim Acta 55(6):2048–2054. doi: 10.1016/j.electacta.2009.11.033 Google Scholar
  55. 55.
    Jiang X, Lou S, Chen D, Shen J, Han W, Sun X, Li J, Wang L (2015) Fabrication of polyaniline/graphene oxide composite for graphite felt electrode modification and its performance in the bioelectrochemical system. J Electroanal Chem 744:95–100. doi: 10.1016/j.jelechem.2015.03.001 Google Scholar
  56. 56.
    Li C, Ding L, Cui H, Zhang L, Xu K, Ren H (2012) Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour Technol 116:459–465. doi: 10.1016/j.biortech.2012.03.115 Google Scholar
  57. 57.
    Mu S (2004) Electrochemical copolymerization of aniline and o-aminophenol. Synth Met 143(3):259–268. doi: 10.1016/j.synthmet.2003.12.008 Google Scholar
  58. 58.
    Lv Z, Chen Y, Wei H, Li F, Hu Y, Wei C, Feng C (2013) One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim Acta 111:366–373. doi: 10.1016/j.electacta.2013.08.022 Google Scholar
  59. 59.
    Hui J, Jiang X, Xie H, Chen D, Shen J, Sun X, Han W, Li J, Wang L (2016) Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system. Electrochim Acta 190:16–24. doi: 10.1016/j.electacta.2015.12.119 Google Scholar
  60. 60.
    Cui H-F, Du L, Guo P-B, Zhu B, Luong JHT (2015) Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources 283:46–53. doi: 10.1016/j.jpowsour.2015.02.088 Google Scholar
  61. 61.
    Walcarius A (1999) Zeolite-modified electrodes in electroanalytical chemistry. Anal Chim Acta 384:1–16Google Scholar
  62. 62.
    Wu X, Tong F, Yong X, Zhou J, Zhang L, Jia H, Wei P (2016) Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells. J Hazard Mater 308:303–311. doi: 10.1016/j.jhazmat.2016.01.070 Google Scholar
  63. 63.
    Wu X-Y, Tong F, Song T-S, Gao X-Y, Xie J-J, Zhou CC, Zhang L-X, Wei P (2015) Effect of zeolite-coated anode on the performance of microbial fuel cells. J Chem Technol Biotechnol 90(1):87–92. doi: 10.1002/jctb.4290 Google Scholar
  64. 64.
    Haghighi B, Hamidi H, Gorton L (2010) Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensors Actuators B Chem 147(1):270–276. doi: 10.1016/j.snb.2010.03.020 Google Scholar
  65. 65.
    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21(3):389–407. doi: 10.1016/j.bios.2004.12.001 Google Scholar
  66. 66.
    Ellis D, Eckhoff M, Neff VD (1981) Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian Blue. J Phys Chem 85(9):1225–1231Google Scholar
  67. 67.
    Ricci F, Amine A, Palleschi G, Moscone D (2003) Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18(2–3):165–174Google Scholar
  68. 68.
    Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian Blue. J Electrochem Soc 125(6):886–887Google Scholar
  69. 69.
    DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv Funct Mater 14:224–232Google Scholar
  70. 70.
    Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19:162–168Google Scholar
  71. 71.
    Pyrasch M, Tieke B (2001) Electro- and photoresponsive films of Prussian blue prepared upon multiple sequential adsorption. Langmuir 17:7706–7709Google Scholar
  72. 72.
    Zhou P, Xue D, Luo H, Chen X (2002) Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowire arrays. Nano Lett 2:845–847Google Scholar
  73. 73.
    Wang L, Tricard S, Cao L, Liang Y, Zhao J, Fang J, Shen W (2015) Prussian blue/1-butyl-3-methylimidazolium tetrafluoroborate – graphite felt electrodes for efficient electrocatalytic determination of nitrite. Sensors Actuators B Chem 214:70–75. doi: 10.1016/j.snb.2015.03.009 Google Scholar
  74. 74.
    Le TXH, Esmilaire R, Drobek M, Bechelany M, Vallicari C, Nguyen DL, Julbe A, Tingry S, Cretin M (2016) Design of novel Fuel Cell-Fenton system a smart approach to zero energy depollution. J Mater Chem A 4:17686. doi: 10.1039/C6TA05443A Google Scholar
  75. 75.
    Li W, Liu J, Yan C (2012) The electrochemical catalytic activity of single-walled carbon nanotubes towards VO2+/VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery. Electrochim Acta 79:102–108. doi: 10.1016/j.electacta.2012.06.109 Google Scholar
  76. 76.
    Petrucci E, Da Pozzo A, Di Palma L (2016) On the ability to electrogenerate hydrogen peroxide and to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes. Chem Eng J 283:750–758. doi: 10.1016/j.cej.2015.08.030 Google Scholar
  77. 77.
    Le TXH, Bechelany M, Lacour S, Oturan N, Oturan MA, Cretin M (2015) High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94:1003–1011. doi: 10.1016/j.carbon.2015.07.086 Google Scholar
  78. 78.
    Hammami S, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2007) Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: application of the experimental design methodology. J Electroanal Chem 610(1):75–84. doi: 10.1016/j.jelechem.2007.07.004 Google Scholar
  79. 79.
    Abdessalem AK, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2008) Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Appl Catal B Environ 78(3–4):334–341. doi: 10.1016/j.apcatb.2007.09.032 Google Scholar
  80. 80.
    Mousset E, Oturan N, van Hullebusch ED, Guibaud G, Esposito G, Oturan MA (2014) Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process – study of soil washing recycling possibilities and environmental impact. Water Res 48:306–316. doi: 10.1016/j.watres.2013.09.044 Google Scholar
  81. 81.
    Le TXH, Nguyen DL, Yacouba ZA, Zoungrana L, Avril F, Petit E, Mendret J, Bonniol V, Bechelany M, Lacour S, Lesage G, Cretin M (2016) Toxicity removal assessments related to degradation pathways of azo dyes: toward an optimization of electro-Fenton treatment. Chemosphere 161:308–318. doi: 10.1016/j.chemosphere.2016.06.108 Google Scholar
  82. 82.
    Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482Google Scholar
  83. 83.
    Oturan MA, Oturan N, Lahitte C, Trevin S (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent application to the mineralization of an organic micropollutant, pentachlorophenol. J Electroanal Chem 507:96–102Google Scholar
  84. 84.
    Edelahi MC, Oturan N, Oturan MA, Padellec Y, Bermond A, Kacemi KE (2003) Degradation of diuron by the electro-Fenton process. Environ Chem Lett 1(4):233–236Google Scholar
  85. 85.
    Panizza M, Oturan MA (2011) Degradation of alizarin red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56(20):7084–7087. doi: 10.1016/j.electacta.2011.05.105 Google Scholar
  86. 86.
    Sires I, Guivarch E, Oturan N, Oturan MA (2008) Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere 72(4):592–600. doi: 10.1016/j.chemosphere.2008.03.010 Google Scholar
  87. 87.
    Ozcan A, Oturan MA, Oturan N, Sahin Y (2009) Removal of acid Orange 7 from water by electrochemically generated Fenton’s reagent. J Hazard Mater 163(2–3):1213–1220. doi: 10.1016/j.jhazmat.2008.07.088 Google Scholar
  88. 88.
    Hammami S, Bellakhal N, Oturan N, Oturan MA, Dachraoui M (2008) Degradation of acid Orange 7 by electrochemically generated (*)OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: a mechanistic study. Chemosphere 73(5):678–684. doi: 10.1016/j.chemosphere.2008.07.010 Google Scholar
  89. 89.
    Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83(1–2):140–149. doi: 10.1016/j.apcatb.2008.02.011 Google Scholar
  90. 90.
    Elaoud SC, Panizza M, Cerisola G, Mhiri T (2012) Coumaric acid degradation by electro-Fenton process. J Electroanal Chem 667:19–23. doi: 10.1016/j.jelechem.2011.12.013 Google Scholar
  91. 91.
    Hanna K, Chiron S, Oturan MA (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res 39(12):2763–2773. doi: 10.1016/j.watres.2005.04.057 Google Scholar
  92. 92.
    Gözmen B, Oturan MA, Oturan N, Erbatur O (2003) Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton’s reagent. Environ Sci Technol 37(16):3716–3723Google Scholar
  93. 93.
    Irmak S, Yavuz HI, Erbatur O (2006) Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes. Appl Catal B Environ 63(3–4):243–248. doi: 10.1016/j.apcatb.2005.10.008 Google Scholar
  94. 94.
    Aaron JJ, Oturan MA (2001) New photochemical and electrochemical methods for the degradation of pesticides in aqueous media. Environmental applications. Turk J Chem 25:509–520Google Scholar
  95. 95.
    Oturan MA, Aaron JJ, Oturan N, Pinson J (1999) Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical method. Pestic Sci 55:558–562Google Scholar
  96. 96.
    Diagne M, Oturan N, Oturan MA (2007) Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66(5):841–848. doi: 10.1016/j.chemosphere.2006.06.033 Google Scholar
  97. 97.
    Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B Environ 72(3–4):382–394. doi: 10.1016/j.apcatb.2006.11.016 Google Scholar
  98. 98.
    Huguenot D, Mousset E, van Hullebusch ED, Oturan MA (2015) Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. J Environ Manag 153:40–47. doi: 10.1016/j.jenvman.2015.01.037 Google Scholar
  99. 99.
    Mousset E, Huguenot D, van Hullebusch ED, Oturan N, Guibaud G, Esposito G, Oturan MA (2016) Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry. Environ Pollut 211:354–362. doi: 10.1016/j.envpol.2016.01.021 Google Scholar
  100. 100.
    Lin H, Zhang H, Wang X, Wang L, Wu J (2014) Electro-Fenton removal of Orange II in a divided cell: reaction mechanism, degradation pathway and toxicity evolution. Sep Purif Technol 122:533–540. doi: 10.1016/j.seppur.2013.12.010 Google Scholar
  101. 101.
    Mousset E, Frunzo L, Esposito G, van Hullebusch ED, Oturan N, Oturan MA (2016) A complete phenol oxidation pathway obtained during electro-Fenton treatment and validated by a kinetic model study. Appl Catal B Environ 180:189–198. doi: 10.1016/j.apcatb.2015.06.014 Google Scholar
  102. 102.
    Oturan MA, Pimentel M, Oturan N, Sirés I (2008) Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment. Electrochim Acta 54(2):173–182. doi: 10.1016/j.electacta.2008.08.012 Google Scholar
  103. 103.
    Lin H, Oturan N, Wu J, Zhang H, Oturan MA (2017) Cold incineration of sucralose in aqueous solution by electro-Fenton process. Sep Purif Technol 173:218–225. doi: 10.1016/j.seppur.2016.09.028 Google Scholar
  104. 104.
    Le TXH, Bechelany M, Champavert J, Cretin M (2015) A highly active based graphene cathode for electro-Fenton reaction. RSC Adv 5:42536–42539. doi: 10.1039/C5RA04811G Google Scholar
  105. 105.
    Le TXH, Charmette C, Bechelany M, Cretin M (2016) Facile preparation of porous carbon cathode to eliminate Paracetamol in aqueous medium using electro-Fenton system. Electrochim Acta 188:378–384. doi: 10.1016/j.electacta.2015.12.005 Google Scholar
  106. 106.
    Pajootan E, Arami M, Rahimdokht M (2014) Discoloration of wastewater in a continuous electro-Fenton process using modified graphite electrode with multi-walled carbon nanotubes/surfactant. Sep Purif Technol 130:34–44. doi: 10.1016/j.seppur.2014.04.025 Google Scholar
  107. 107.
    Miao J, Zhu H, Tang Y, Chen Y, Wan P (2014) Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem Eng J 250:312–318. doi: 10.1016/j.cej.2014.03.043 Google Scholar
  108. 108.
    Zhou L, Zhou M, Hu Z, Bi Z, Serrano KG (2014) Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochim Acta 140:376–383. doi: 10.1016/j.electacta.2014.04.090 Google Scholar
  109. 109.
    Popuri SR, Chang C-Y, Xu J (2011) A study on different addition approach of Fenton’s reagent for DCOD removal from ABS wastewater. Desalination 277(1–3):141–146. doi: 10.1016/j.desal.2011.04.017 Google Scholar
  110. 110.
    Guo S, Zhang G, Wang J (2014) Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: characterization, process optimization and mechanism. J Colloid Interface Sci 433:1–8. doi: 10.1016/j.jcis.2014.07.017 Google Scholar
  111. 111.
    Hassan H, Hameed BH (2011) Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chem Eng J 171(3):912–918. doi: 10.1016/j.cej.2011.04.040 Google Scholar
  112. 112.
    Sánchez-Sánchez CM, Expósito E, Casado J, Montiel V (2007) Goethite as a more effective iron dosage source for mineralization of organic pollutants by electro-Fenton process. Electrochem Commun 9(1):19–24. doi: 10.1016/j.elecom.2006.08.023 Google Scholar
  113. 113.
    Barhoumi N, Labiadh L, Oturan MA, Oturan N, Gadri A, Ammar S, Brillas E (2015) Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 141:250–257. doi: 10.1016/j.chemosphere.2015.08.003 Google Scholar
  114. 114.
    Labiadh L, Oturan MA, Panizza M, Hamadi NB, Ammar S (2015) Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J Hazard Mater 297:34–41. doi: 10.1016/j.jhazmat.2015.04.062 Google Scholar
  115. 115.
    Iglesias O, Gómez J, Pazos M, Sanromán MÁ (2014) Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads. Appl Catal B Environ 144:416–424. doi: 10.1016/j.apcatb.2013.07.046 Google Scholar
  116. 116.
    Rosales E, Iglesias O, Pazos M, Sanroman MA (2012) Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. J Hazard Mater 213–214:369–377. doi: 10.1016/j.jhazmat.2012.02.005 Google Scholar
  117. 117.
    Özcan A, Atılır Özcan A, Demirci Y, Şener E (2017) Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Appl Catal B Environ 200:361–371. doi: 10.1016/j.apcatb.2016.07.018 Google Scholar
  118. 118.
    Li Y, Lu A, Ding H, Wang X, Wang C, Zeng C, Yan Y (2010) Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate. Electrochem Commun 12(7):944–947. doi: 10.1016/j.elecom.2010.04.027 Google Scholar
  119. 119.
    Ganiyu SO, Le TXH, Bechelany M, Esposito G, van Hullebusch ED, Oturan MA, Cretin M (2017) A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J Mater Chem A 5:3655. doi: 10.1039/C6TA09100H Google Scholar
  120. 120.
    Xu N, Zhang Y, Tao H, Zhou S, Zeng Y (2013) Bio-electro-Fenton system for enhanced estrogens degradation. Bioresour Technol 138:136–140. doi: 10.1016/j.biortech.2013.03.157 Google Scholar
  121. 121.
    Birjandi N, Younesi H, Ghoreyshi AA, Rahimnejad M (2016) Electricity generation through degradation of organic matters in medicinal herbs wastewater using bio-electro-Fenton system. J Environ Manag 180:390–400. doi: 10.1016/j.jenvman.2016.05.073 Google Scholar
  122. 122.
    Zhuang L, Zhou S, Yuan Y, Liu M, Wang Y (2010) A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation. Chem Eng J 163(1–2):160–163. doi: 10.1016/j.cej.2010.07.039 Google Scholar
  123. 123.
    Wang XQ, Liu CP, Yuan Y, Li FB (2014) Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. J Hazard Mater 275:200–209. doi: 10.1016/j.jhazmat.2014.05.003 Google Scholar
  124. 124.
    Feng CH, Li FB, Mai HJ, Li XZ (2010) Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol 44(5):1875–1880Google Scholar
  125. 125.
    Plakas KV, Sklari SD, Yiankakis DA, Sideropoulos GT, Zaspalis VT, Karabelas AJ (2016) Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: pilot-scale studies. Water Res 91:183–194. doi: 10.1016/j.watres.2016.01.013 Google Scholar
  126. 126.
    Barhoumi N, Olvera-Vargas H, Oturan N, Huguenot D, Gadri A, Ammar S, Brillas E, Oturan MA (2017) Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Appl Catal B Environ 209:637–647. doi: 10.1016/j.apcatb.2017.03.034 Google Scholar
  127. 127.
    Ren G, Zhou M, Liu M, Ma L, Yang H (2016) A novel vertical-flow electro-Fenton reactor for organic wastewater treatment. Chem Eng J 298:55–67. doi: 10.1016/j.cej.2016.04.011 Google Scholar
  128. 128.
    Smith NAS, Knoerzer K, Ramos ÁM (2014) Evaluation of the differences of process variables in vertical and horizontal configurations of High Pressure Thermal (HPT) processing systems through numerical modelling. Innovative Food Sci Emerg Technol 22:51–62. doi: 10.1016/j.ifset.2013.12.021 Google Scholar
  129. 129.
    Rosales E, Pazos M, Longo MA, Sanromán MA (2009) Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chem Eng J 155(1–2):62–67. doi: 10.1016/j.cej.2009.06.028 Google Scholar
  130. 130.
    Yu F, Zhou M, Zhou L, Peng R (2014) A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ Sci Technol Lett 1(7):320–324. doi: 10.1021/ez500178p Google Scholar
  131. 131.
    Zhang L, Yin X, Li SFY (2015) Bio-electrochemical degradation of paracetamol in a microbial fuel cell-Fenton system. Chem Eng J 276:185–192. doi: 10.1016/j.cej.2015.04.065 Google Scholar
  132. 132.
    Zhuang L, Zhou S, Li Y, Liu T, Huang D (2010) In situ Fenton-enhanced cathodic reaction for sustainable increased electricity generation in microbial fuel cells. J Power Sources 195(5):1379–1382. doi: 10.1016/j.jpowsour.2009.09.011 Google Scholar
  133. 133.
    Zhu X, Ni J (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem Commun 11(2):274–277. doi: 10.1016/j.elecom.2008.11.023 Google Scholar
  134. 134.
    Luo Y, Zhang R, Liu G, Li J, Qin B, Li M, Chen S (2011) Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour Technol 102(4):3827–3832. doi: 10.1016/j.biortech.2010.11.121 Google Scholar
  135. 135.
    Zhu X, Logan BE (2013) Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. J Hazard Mater 252–253:198–203. doi: 10.1016/j.jhazmat.2013.02.051 Google Scholar
  136. 136.
    Espinoza C, Romero J, Villegas L, Cornejo-Ponce L, Salazar R (2016) Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant. J Hazard Mater 319:24–33. doi: 10.1016/j.jhazmat.2016.03.003 Google Scholar
  137. 137.
    Garcia-Segura S, Brillas E (2014) Advances in solar photoelectro-Fenton: Decolorization and mineralization of the direct yellow 4 diazo dye using an autonomous solar pre-pilot plant. Electrochim Acta 140:384–395. doi: 10.1016/j.electacta.2014.04.009 Google Scholar
  138. 138.
    Garcia-Segura S, Cavalcanti EB, Brillas E (2014) Mineralization of the antibiotic chloramphenicol by solar photoelectro-Fenton. Appl Catal B Environ 144:588–598. doi: 10.1016/j.apcatb.2013.07.071 Google Scholar
  139. 139.
    El-Ghenymy A, Cabot PL, Centellas F, Garrido JA, Rodriguez RM, Arias C, Brillas E (2013) Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell. Chemosphere 91(9):1324–1331. doi: 10.1016/j.chemosphere.2013.03.005 Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institut Européen des membranes (IEM UMR-5635, ENSCM, CNRS)Université de MontpellierMontpellier Cedex 5France

Personalised recommendations