Reactor Design for Advanced Oxidation Processes

  • José L. NavaEmail author
  • Carlos Ponce de León
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)


Electrochemical reactor design for oxidation processes follows similar engineering principles used for typical electrosynthesis reactors and include considerations of the components materials, electrode and cell geometries, mass transport conditions, rate of reactions, space–time yield calculations, selectivity, modeling, and energy efficiencies. It is common practice to optimize these characteristics at laboratory scale level followed by more practical considerations to build a larger reactor able to accomplish a required performance that can be easily assembled and requires low maintenance and monitoring. The scaling-up process should involve testing a variety of electrode configurations and cell designs to maximize the degradation of a particular pollutant. In this chapter, we describe the general principles of reactor design and list the most typical reactor configurations and performance followed by some recent advances in modeling and further developments.


Computational fluid dynamics Current distributions Electrochemical reactor Filter-press flow cell Mass transport Non-ideal electrolyte flow Packed bed electrode Parallel plate electrodes Rotating cylinder electrode Wastewater treatment 


  1. 1.
    Wendt H, Kreysa G (2010) Electrochemical engineering; science and technology in chemical and other industries. Springer, BerlinGoogle Scholar
  2. 2.
    Pletcher D, Walsh FC (1990) Industrial electrochemistry, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  3. 3.
    Bebelis S, Bouzek K, Cornell A, Kelsall GH, Ferreira MGS, Lapicque F, Ponce de León C, Rodrigo MA, Walsh FC (2013) Highlights during the development of electrochemical engineering. Chem Eng Res Des 91:1998–2020CrossRefGoogle Scholar
  4. 4.
    Quan X, Cheng Z, Chen B, Zhu X (2013) Electrochemical oxidation of recalcitrant organic compounds in biologically treated municipal solid waste leachate in a flow reactor. J Environ Sci 25:2023–2030CrossRefGoogle Scholar
  5. 5.
    Brillas E, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Centellas F (2008) Wastewaters by electrochemical advanced oxidation processes using a BDD anode and electrogenerated H2O2 with Fe(II) and UVA light as catalysts. Port Electrochim Acta 26:15–46CrossRefGoogle Scholar
  6. 6.
    Vasconcelos VM, Ponce-de-León C, Nava JL, Lanza MRV (2016) Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation-electro-Fenton in a filter-press flow cell. J Electroanal Chem 765:179–187CrossRefGoogle Scholar
  7. 7.
    Bedolla-Guzman A, Feria-Reyes R, Gutierrez-Granados S, Peralta-Hernández JM (2017) Decolorization and degradation of reactive yellow HF aqueous solutions by electrochemical advanced oxidation processes. Environ Sci Pollut Res 24:12506–12514CrossRefGoogle Scholar
  8. 8.
    Ting WP, Lu MC, Huang YH (2008) The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). J Hazard Mater 156:421–427CrossRefGoogle Scholar
  9. 9.
    Koparal AS, Yavuz Y, Gürel C, Öğütveren UB (2007) Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode. J Hazard Mater 145:100–108CrossRefGoogle Scholar
  10. 10.
    Yavuz Y, Shahbazi R (2012) Anodic oxidation of reactive black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Separ Purif Tech 85:130–136CrossRefGoogle Scholar
  11. 11.
    Anotai J, Su CC, Tsai YC, Lu MC (2010) Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. J Hazard Mater 183:888–893CrossRefGoogle Scholar
  12. 12.
    Hussain SN, Roberts EPL, Asghar HMA, Campen AK, Brown NW (2013) Oxidation of phenol and the adsorption of breakdown products using a graphite adsorbent with electrochemical regeneration. Electrochim Acta 92:20–30CrossRefGoogle Scholar
  13. 13.
    Cusick RD, Ullery ML, Dempsey BA, Logan BE (2014) Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Res 54:297–306CrossRefGoogle Scholar
  14. 14.
    Valenzuela AL, Vázquez-Medrano R, Ibáñez JB, Frontana-Uribe BA, Prato-Garcia D (2017) Remediation of diquat-contaminated water by electrochemical advanced oxidation processes using boron-doped diamond (BDD) anodes. Water Air Soil Pollut 228:67CrossRefGoogle Scholar
  15. 15.
    Bergmann MEH, Rollin J, Iourtchouk T (2009) The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochim Acta 54:2102–2107CrossRefGoogle Scholar
  16. 16.
    Recio FJ, Herrasti P, Vazquez L, Ponce de León C, Walsh FC (2013) Mass transfer to a nanostructured nickel electrodeposit of high surface area in a rectangular flow channel. Electrochim Acta 90:507–513CrossRefGoogle Scholar
  17. 17.
    Nava-M de Oca JL, Sosa E, Ponce de León C, Oropeza MT (2001) Effectiveness factors in an electrochemical reactor with rotating cylinder electrode for the acid-cupric/copper cathode interface process. Chem Eng Sci 56:2695–2702CrossRefGoogle Scholar
  18. 18.
    Fleischmann M, Ibrisagić Z (1980) Electrical measurement in bipolar trickle reactors. J Appl Electrochem 10:151–156CrossRefGoogle Scholar
  19. 19.
    Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862CrossRefGoogle Scholar
  20. 20.
    Pletcher D, Walsh FC (1992) Three-dimensional electrodes. In: Genders JD, Weinberg NL (eds) Electrochemical technology for a cleaner environment. The Electrosynthesis Company Inc, Lancaster, NYGoogle Scholar
  21. 21.
    Harrington T, Pletcher D (1999) The removal of low levels of organics from aqueous solutions using Fe(II) and hydrogen peroxide formed in situ at gas diffusion electrodes. J Electrochem Soc 146:2983–2989CrossRefGoogle Scholar
  22. 22.
    Recio FJ, Herrasti P, Sirés I, Kulak AN, Bavykin DV, Ponce de León C, Walsh FC (2011) The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochim Acta 56:5158–5165CrossRefGoogle Scholar
  23. 23.
    He Y, Lin H, Wang X, Huang W, Chen R, Li H (2016) A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation. Chem Commun 52:8026–8029CrossRefGoogle Scholar
  24. 24.
    Bard AJ, Faulkner LR (2001) Electrochemical methods; fundamentals and applications, 2nd edn. Wiley, Hoboken, NJGoogle Scholar
  25. 25.
    Walsh FC (1993) A first course in electrochemical engineering. The Electrochemical Consultancy, RomseyGoogle Scholar
  26. 26.
    Trinidad P, Walsh FC (1996) Hydrodynamic behaviour of the FM01-LC reactor. Electrochim Acta 41:493–502CrossRefGoogle Scholar
  27. 27.
    Sandoval MA, Fuentes R, Walsh FC, Nava JL, Ponce de León C (2016) Computational fluid dynamics simulations of single-phase flow having a stack of three cells. Electrochim Acta 216:490–498CrossRefGoogle Scholar
  28. 28.
    Bengoa C, Montillet A, Legentilhomme P, Legrand J (2000) Characterization and modeling of the hydrodynamic behaviour in the filter-press-type FM01-LC electrochemical cell by direct flow visualization and residence time distribution. Ind Eng Chem Res 29:2199–2206CrossRefGoogle Scholar
  29. 29.
    Rivera FF, Ponce de León C, Walsh FC, Nava JL (2015) The reaction environment in a filter-press laboratory reactor: the FM01-LC cell. Electrochim Acta 161:436–452CrossRefGoogle Scholar
  30. 30.
    Coria G, Pérez T, Sirés I, Nava JL (2015) Mass transport studies during dissolved oxygen reduction to hydrogen peroxide in a filter-press electrolyzer using graphite felt, reticulated vitreous carbon and boron-doped diamond as cathodes. J Electroanal Chem 257:225–229CrossRefGoogle Scholar
  31. 31.
    Gherardini L, Michaud PA, Panizza M, Comninellis C, Vatistas N (2001) Electrochemical oxidation of 4-chlorophenol for wastewater treatment. J Electrochem Soc 148:D78–D82CrossRefGoogle Scholar
  32. 32.
    Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1992) Local mass transport effects in the FM01 laboratory electrolyser. J Appl Electrochem 22:613–619CrossRefGoogle Scholar
  33. 33.
    Griffiths M, Ponce de León C, Walsh FC (2005) Mass transport in the rectangular channel of a filter-press electrolyzer (the FM01-LC reactor). Am Int Chem Eng J 51:682–687CrossRefGoogle Scholar
  34. 34.
    Santos JLC, Geraldes V, Velizarov S, Crespo JG (2010) Characterization of fluid dynamics and mass-transfer in an electrochemical oxidation cell by experimental and CFD studies. Chem Eng J 157:379–392CrossRefGoogle Scholar
  35. 35.
    Montillet A, Comiti J, Legrand J (1994) Application of metallic foams in electrochemical reactors of filter-press type. Part II: mass transfer performance. J Appl Electrochem 24:384–389CrossRefGoogle Scholar
  36. 36.
    Eisenberg M, Tobias CW, Wilke CR (1954) Ionic mass transfer and concentration polarization at rotating electrode. J Electrochem Soc 101:306–320CrossRefGoogle Scholar
  37. 37.
    Castañeda LF (2016) Evaluation of the performance of the FM01-LC reactor in the regeneration of H2SO4 from depleted baths by the electrodialysis process: theoretical and practical study. Dissertation, Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C.Google Scholar
  38. 38.
    Pérez T, Ponce de León C, Walsh FC, Nava JL (2015) Simulation of current distribution along a planar electrode under turbulent flow conditions in a laboratory filter-press flow cell. Electrochim Acta 154:352–360CrossRefGoogle Scholar
  39. 39.
    Pérez T, León MI, Nava JL (2013) Numerical simulation of current distribution along the boron-doped diamond anode of a filter-press-type FM01-LC reactor during the oxidation of water. J Electroanal Chem 707:1–6CrossRefGoogle Scholar
  40. 40.
    Butrón E, Juárez ME, Solis M, Teutli M, González I, Nava JL (2007) Electrochemical incineration of indigo textile dye in filter-press-type FM01-LC electrochemical cell using BDD electrodes. Electrochim Acta 52:6888–6894CrossRefGoogle Scholar
  41. 41.
    Coria G, Nava JL, Carreño G (2014) Electrooxidation of diclofenac in synthetic pharmaceutical wastewater using an electrochemical reactor equipped with a boron doped diamond electrode. J Mex Chem Soc 58:303–308Google Scholar
  42. 42.
    Nava JL, Núñez F, González I (2007) Electrochemical incineration of o-cresol and p-cresol in the filter-press-type FM01-LC electrochemical cell using BDD electrodes in sulphate media at pH 0. Electrochim Acta 52:3229–3235CrossRefGoogle Scholar
  43. 43.
    Pérez T, Sirés I, Brillas E, Nava JL (2017) Solar fotoelectron-Fenton flow plant modelling for the degradation of the antibiotic erythromycin in sulphate medium. Electrochim Acta 228:45–56CrossRefGoogle Scholar
  44. 44.
    Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal Environ 166–167:603–643CrossRefGoogle Scholar
  45. 45.
    Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407CrossRefGoogle Scholar
  46. 46.
    Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367CrossRefGoogle Scholar
  47. 47.
    Goodridge F, Scott K (1995) Electrochemical process engineering: a guide to the design of electrochemical plant. Plenum Press, New YorkGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Departamento de Ingeniería Geomática e HidráulicaUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Electrochemical Engineering Laboratory, Energy Technology Research Group, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations