Advertisement

Electro-Fenton Process: Fundamentals and Reactivity

  • Ignasi SirésEmail author
  • Enric Brillas
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)

Abstract

This chapter is conceived as the gateway to more specific sections in the book. Its main aim is to introduce all the reactions of interest for fully understanding further development and applications of the EF process. The 50 reactions provided condense all the phenomena occurring in such a complex system and serve as the platform to justify the need of different devices and setups when treating water matrices of very different nature. In addition, all the key operation parameters for H2O2 electrogeneration and water decontamination are discussed. Subsections devoted to explaining the effect of the electrolyte composition, cell design, cathode and anode nature, catalyst source, hydrodynamic conditions, solution pH, and operation mode (potentiostatic or galvanostatic) are set out in summarized form, in order to present all the crucial information without intending to duplicate ideas that will be already given in subsequent chapters.

Keywords

Catalyst source for electro-Fenton Cathode and anode nature in electro-Fenton treatment Electrolytic cells for electro-Fenton Influence of electrolyte composition on degradation kinetics in electro-Fenton Operation modes in electro-Fenton Reactions occurring in electro-Fenton process 

References

  1. 1.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6663CrossRefGoogle Scholar
  2. 2.
    Zakharov II, Kudjukov KY, Bondar VV, Tyupalo NF, Minaev BF (2011) DFT-based thermodynamics of Fenton reactions rejects the ‘pure’ aquacomplex models. Comput Theoret Chem 964:94–99CrossRefGoogle Scholar
  3. 3.
    Yamamoto N, Koga N, Nagaoka M (2012) Ferryl-oxo species produced from Fenton’s reagent via a two-step pathway: minimum free-energy path analysis. J Phys Chem B 116:14178–14182CrossRefGoogle Scholar
  4. 4.
    Ayodele OB (2016) Structure and reactivity of ZSM-5 supported oxalate ligand functionalized nano-Fe catalyst for low temperature direct methane conversion to methanol. Energy Conv Manage 126:537–547CrossRefGoogle Scholar
  5. 5.
    Saporito-Magriñá C, Musacco-Sebio R, Acosta JM, Bajicoff S, Paredes-Fleitas P, Boveris A, Repetto MG (2017) Rat liver mitochondrial dysfunction by addition of copper(II) or iron(III) ions. J Inorg Biochem 166:5–1CrossRefGoogle Scholar
  6. 6.
    Li WP, Su CH, Chang YC, Lin YJ, Yeh CS (2016) Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano 10:2017–2027CrossRefGoogle Scholar
  7. 7.
    Xu Q, Liu Y, Su R, Cai L, Li B, Zhang Y, Zhang L, Wang Y, Wang Y, Li N, Gong X, Gu Z, Chen Y, Tan Y, Dong C, Sreeprasad TS (2016) Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration. Nanoscale 8:17919–17927CrossRefGoogle Scholar
  8. 8.
    Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84CrossRefGoogle Scholar
  9. 9.
    Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:257–264CrossRefGoogle Scholar
  10. 10.
    Tomat R, Vecchi E (1971) Electrocatalytic production of OH radicals and their oxidative addition to benzene. J Appl Electrochem 1:185–188CrossRefGoogle Scholar
  11. 11.
    Sudoh M, Kodera T, Sakai K, Zhang JQ, Koide K (1986) Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton's reagent. J Chem Eng Jpn 19:513–518CrossRefGoogle Scholar
  12. 12.
    Buxton GU, Greenstock CL, Helman WP, Ross AB (1988) critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886CrossRefGoogle Scholar
  13. 13.
    Oturan MA, Oturan N, Aaron JJ (2004) Traitement des micropolluants organiques dans l'eau par des procédés d’oxydation avancée. Actual Chimique 277–278:57–63Google Scholar
  14. 14.
    Burns J, Craig P, Shaw T, Ferry A (2010) Multivariate examination of Fe(II)/Fe(III) cycling and consequent hydroxyl radical generation. Env Sci Technol 44:7226–7723CrossRefGoogle Scholar
  15. 15.
    Bossmann SH, Oliveros E, Göb S, Siegwart S, Dahlen EP, Payawan J, Straub M, Wörner M, Braun AM (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J Phys Chem A 102:5542–5550CrossRefGoogle Scholar
  16. 16.
    Kremer ML (1999) Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys Chem Chem Phys 1:3595–3605CrossRefGoogle Scholar
  17. 17.
    Pang SY, Jiang J, Ma J (2011) Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environ Sci Technol 45:307–312CrossRefGoogle Scholar
  18. 18.
    Pignatello JJ, Liu D, Huston P (1999) Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ Sci Technol 33:1832–1839CrossRefGoogle Scholar
  19. 19.
    Pliego G, Zazo JA, Garcia-Muñoz P, Muñoz M, Casas JA, Rodríguez JJ (2015) Trends in the intensification of Fenton process by wastewater treatment: an overview. Crit Rev Environ Sci Technol 45:2611–2692CrossRefGoogle Scholar
  20. 20.
    Reis RM, Beati AAGF, Rocha RS, Assumpção MHMT, Santos MC, Bertazzoli R, Lanza MRV (2012) Use of gas diffusion electrode for the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor. Ind Eng Chem Res 51:649–654CrossRefGoogle Scholar
  21. 21.
    Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407CrossRefGoogle Scholar
  22. 22.
    Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Amer Chem Soc 135:2013–2036CrossRefGoogle Scholar
  23. 23.
    Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S (2014) High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Amer Chem Soc 136:10053–11006CrossRefGoogle Scholar
  24. 24.
    Da Pozzo A, Di Palma L, Merli C, Petrucci E (2005) An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. J Appl Electrochem 35:413–419CrossRefGoogle Scholar
  25. 25.
    Alvarez-Gallegos A, Pletcher D (1998) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in acidic aqueous solutions. Electrochim Acta 44:853–886CrossRefGoogle Scholar
  26. 26.
    Badellino C, Rodrigues CA, Bertazzoli R (2007) Oxidation of herbicides by in situ synthesized hydrogen peroxide and Fenton’s reagent in an electrochemical flow reactor: study of the degradation of 2,4-dichlorophenoxyacetic acid. J Appl Electrochem 37:451–459CrossRefGoogle Scholar
  27. 27.
    Yu X, Zhou M, Ren G, Ma L (2015) A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem Eng J 263:92–100CrossRefGoogle Scholar
  28. 28.
    Barazesh JM, Hennebel T, Jasper JT, Sedlak DL (2015) Modular advanced oxidation process enabled by cathodic hydrogen peroxide production. Env Sci Tech 49:7391–7399CrossRefGoogle Scholar
  29. 29.
    Brillas E, Bastida RM, Llosa E, Casado J (1995) Electrochemical destruction of aniline and 4-chloroaniline for waste water treatment using a carbon-PTFE O2-fed cathode. J Electrochem Soc 142:1733–1174CrossRefGoogle Scholar
  30. 30.
    Oturan MA, Guivarch E, Oturan N, Sirés I (2008) Oxidation pathways of malachite green by Fe3+-catalyzed electro-Fenton process. Appl Catal B: Environ 82:244–254CrossRefGoogle Scholar
  31. 31.
    Flox C, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2007) Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal Today 129:29–36CrossRefGoogle Scholar
  32. 32.
    Coria G, Sirés I, Brillas E, Nava JL (2016) Influence of the anode material on the degradation of naproxen by Fenton-based electrochemical processes. Chem Eng J 304:817–825CrossRefGoogle Scholar
  33. 33.
    Badellino C, Rodrigues CA, Bertazzoli R (2006) Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: study for the degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 137:856–872CrossRefGoogle Scholar
  34. 34.
    Wang A, Qu J, Ru J, Liu H, Ge J (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 65:227–233CrossRefGoogle Scholar
  35. 35.
    Özcan A, Şahin Y, Savaş Koparal A, Oturan MA (2008) Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem 616:71–78CrossRefGoogle Scholar
  36. 36.
    Oturan MA (2000) An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2,4-D. J Appl Electrochem 30:475–482CrossRefGoogle Scholar
  37. 37.
    Qiang Z, Chang J-H, Huang C-P (2003) Electrochemical regeneration of Fe2+ in Fenton oxidation processes. Water Res 37:1308–1319CrossRefGoogle Scholar
  38. 38.
    Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B: Environ. 72:382–394CrossRefGoogle Scholar
  39. 39.
    Ammar S, Oturan MA, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E (2015) Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Water Res 74:77–87CrossRefGoogle Scholar
  40. 40.
    Iglesias O, Meijide J, Bocos E, Sanroman MA, Pazos M (2015) New approaches on heterogeneous electro-Fenton treatment of winery wastewater. Electrochim Acta 169:134–114CrossRefGoogle Scholar
  41. 41.
    Özcan A, Atilir Özcan A, Demirci Y, Sener E (2017) Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Appl Catal B: Environ 200:361–337CrossRefGoogle Scholar
  42. 42.
    Liang L, Yu F, An Y, Liu M, Zhou M (2017) Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process. Environ Sci Pollut Res 24:1122–1132CrossRefGoogle Scholar
  43. 43.
    Ganiyu SO, Le TXH, Bechelany M, Esposito G, van Hullebusch ED, Oturan MA, Cretin M (2017) A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process. J Mater Chem A 5:3655–3666CrossRefGoogle Scholar
  44. 44.
    Thiam A, Brillas E, Garrido JA, Rodríguez RM, Sirés I (2016) Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Appl Catal B: Environ 180:227–236CrossRefGoogle Scholar
  45. 45.
    Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2015) Effect of anions on electrochemical degradation of azo dye Carmoisine (Acid Red 14) using a BDD anode and air-diffusion cathode. Sep Purif Technol 140:43–52CrossRefGoogle Scholar
  46. 46.
    Steter JR, Brillas E, Sirés I (2016) On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media. Electrochim Acta 222:1464–1474CrossRefGoogle Scholar
  47. 47.
    Kodera F, Umeda M, Yamada A (2005) Detection of hypochlorous acid using reduction wave during anodic cyclic voltammetry. Jpn J Appl Phys 44:L718–L719CrossRefGoogle Scholar
  48. 48.
    Thiam A, Brillas E, Centellas F, Cabot PL, Sirés I (2015) Electrochemical reactivity of Ponceau 4R (food additive E124) in different electrolytes and batch cells. Electrochim Acta 173:523–533CrossRefGoogle Scholar
  49. 49.
    Aguilar ZA, Brillas E, Salazar M, Nava JL, Sirés I (2017) Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of Acid Yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Appl Catal B: Environ 206:44–52CrossRefGoogle Scholar
  50. 50.
    Thiam A, Zhou M, Brillas E, Sirés I (2014) Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Appl Catal B: Environ 150–151:116–125CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de QuímicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations