Advertisement

Conventional Reactors and Microreactors in Electro-Fenton

  • Marco PanizzaEmail author
  • Onofrio Scialdone
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)

Abstract

The cells used for electro-Fenton process look quite different, ranging from the simple open tanks, through the parallel-plate cells, to the sometimes complex designs with three-dimensional moving electrodes or microelectrodes. Recently, pressurized cells and microreactors have been used to improve the performance of the process. This chapter presents a general overview of the main cell configurations used in electro-Fenton process for the treatment of organic pollutants. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

Keywords

Electrochemical reactors Micro-reactors Moving three-dimensional electrodes Parallel-plate flow cell Pressurized reactors Tank cell 

References

  1. 1.
    Pletcher D, Walsh FC (1990) Industrial electrochemistry. Chapman & Hall, LondonGoogle Scholar
  2. 2.
    Panizza M, Cerisola G (2001) Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent. Water Res 35:3987–3992Google Scholar
  3. 3.
    Oturan N, Panizza M, Oturan MA (2009) Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics. J Phys Chem A 113:10988–10993Google Scholar
  4. 4.
    Panizza M, Cerisola G (2009) Electro-Fenton degradation of synthetic dyes. Water Res 43:339–344Google Scholar
  5. 5.
    Panizza M, Oturan MA (2011) Degradation of alizarin red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56:7084–7087Google Scholar
  6. 6.
    Elaoud SC, Panizza M, Cerisola G, Mhiri T (2012) Coumaric acid degradation by electro-Fenton process. J Electroanal Chem 667:19–23Google Scholar
  7. 7.
    Zazou H, Oturan N, Sönmez-Çelebi M, Hamdani M, Oturan MA (2016) Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-Fenton processes using Pt or BDD anode and carbon felt cathode. J Electroanal Chem 774:22–30Google Scholar
  8. 8.
    Barhoumi N, Labiadh L, Oturan MA, Oturan N, Gadri A, Ammar S, Brillas E (2015) Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 141:250–257Google Scholar
  9. 9.
    Olvera-Vargas H, Oturan N, Brillas E, Buisson D, Esposito G, Oturan MA (2014) Electrochemical advanced oxidation for cold incineration of the pharmaceutical ranitidine: mineralization pathway and toxicity evolution. Chemosphere 117:644–651Google Scholar
  10. 10.
    Loaiza-Ambuludi S, Panizza M, Oturan N, Özcan A, Oturan MA (2013) Electro-Fenton degradation of anti-inflammatory drug ibuprofen in hydroorganic medium. J Electroanal Chem 702:31–36Google Scholar
  11. 11.
    Zhou M, Tan Q, Wang Q, Jiao Y, Oturan N, Oturan MA (2012) Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J Hazard Mater 215–216:287–293Google Scholar
  12. 12.
    Oturan MA, Oturan N, Edelahi MC, Podvorica FI, Kacemi KE (2011) Oxidative degradation of herbicide diuron in aqueous medium by Fenton’s reaction based advanced oxidation processes. Chem Eng J 171:127–135Google Scholar
  13. 13.
    Sirés I, Oturan N, Oturan MA (2010) Electrochemical degradation of β-blockers. Studies on single and multicomponent synthetic aqueous solutions. Water Res 44:3109–3120Google Scholar
  14. 14.
    Özcan A, Oturan MA, Oturan N, Şahin Y (2009) Removal of acid orange 7 from water by electrochemically generated Fenton’s reagent. J Hazard Mater 163:1213–1220Google Scholar
  15. 15.
    Sirés I, Oturan N, Oturan MA, Rodríguez RM, Garrido JA, Brillas E (2007) Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim Acta 52:5493–5503Google Scholar
  16. 16.
    Oturan MA, Guivarch E, Oturan N, Sirés I (2008) Oxidation pathways of malachite green by Fe3+-catalyzed electro-Fenton process. Appl Catal B-Environ 82:244–254Google Scholar
  17. 17.
    Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B-Environ 72:382–394Google Scholar
  18. 18.
    Zhou M, Yu Q, Lei L, Barton G (2007) Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep Purif Technol 57:380–387Google Scholar
  19. 19.
    Zhou L, Zhou M, Zhang C, Jiang Y, Bi Z, Yang J (2013) Electro-Fenton degradation of p-nitrophenol using the anodized graphite felts. Chem Eng J 233:185–192Google Scholar
  20. 20.
    Zhou L, Zhou M, Hu Z, Bi Z, Serrano KG (2014) Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochim Acta 140:376–383Google Scholar
  21. 21.
    Zhang C, Zhou M, Yu X, Ma L, Yu F (2015) Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: characterization, degradation activity and stability. Electrochim Acta 160:254–262Google Scholar
  22. 22.
    Zhang C, Zhou M, Ren G, Yu X, Ma L, Yang J, Yu F (2015) Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res 70:414–424Google Scholar
  23. 23.
    Meijide J, Gómez J, Pazos M, Sanromán MA (2016) Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions. J Hazard Mater 319:43–50Google Scholar
  24. 24.
    Iglesias O, Gómez J, Pazos M, Sanromán MÁ (2014) Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads. Appl Catal B-Environ 144:416–424Google Scholar
  25. 25.
    Iglesias O, Meijide J, Bocos E, Sanromán MÁ, Pazos M (2015) New approaches on heterogeneous electro-Fenton treatment of winery wastewater. Electrochim Acta 169:134–141Google Scholar
  26. 26.
    Brillas E, Mur E, Sauleda R, Sànchez L, Peral J, Domènech X, Casado J (1998) Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl Catal B-Environ 16:31–42Google Scholar
  27. 27.
    Sauleda R, Brillas E (2001) Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light. Appl Catal B-Environ 29:135–145Google Scholar
  28. 28.
    Brillas E, Boye B, Sirés I, Garrido JA, RMa Rodrıguez, Arias C, P-Ls C, Comninellis C (2004) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim Acta 49:4487–4496Google Scholar
  29. 29.
    Brillas E, P-Ls C, RMa Rodrıguez, Arias C, Garrido JA, Oliver R (2004) Degradation of the herbicide 2,4-DP by catalyzed ozonation using the O3/Fe2+/UVA system. Appl Catal B-Environ 51:117–127Google Scholar
  30. 30.
    Brillas E, Calpe JC, Cabot P-L (2003) Degradation of the herbicide 2,4-dichlorophenoxyacetic acid by ozonation catalyzed with Fe2+ and UVA light. Appl Catal B-Environ 46:381–391Google Scholar
  31. 31.
    Brillas E, Baños MÁ, Skoumal M, Cabot PL, Garrido JA, Rodríguez RM (2007) Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes. Chemosphere 68:199–209Google Scholar
  32. 32.
    Flox C, Garrido JA, Rodríguez RM, Cabot P-L, Centellas F, Arias C, Brillas E (2007) Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal Today 129:29–36Google Scholar
  33. 33.
    Flox C, Ammar S, Arias C, Brillas E, Vargas-Zavala AV, Abdelhedi R (2006) Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B-Environ 67:93–104Google Scholar
  34. 34.
    Garcia-Segura S, Centellas F, Arias C, Garrido JA, Rodríguez RM, Cabot PL, Brillas E (2011) Comparative decolorization of monoazo, diazo and triazo dyes by electro-Fenton process. Electrochim Acta 58:303–311Google Scholar
  35. 35.
    Almeida LC, Garcia-Segura S, Arias C, Bocchi N, Brillas E (2012) Electrochemical mineralization of the azo dye acid red 29 (Chromotrope 2R) by photoelectro-Fenton process. Chemosphere 89:751–758Google Scholar
  36. 36.
    Garcia-Segura S, El-Ghenymy A, Centellas F, Rodríguez RM, Arias C, Garrido JA, Cabot PL, Brillas E (2012) Comparative degradation of the diazo dye direct yellow 4 by electro-Fenton, photoelectro-Fenton and photo-assisted electro-Fenton. J Electroanal Chem 681:36–43Google Scholar
  37. 37.
    Garcia-Segura S, Dosta S, Guilemany JM, Brillas E (2013) Solar photoelectrocatalytic degradation of acid orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl Catal B-Environ 132–133:142–150Google Scholar
  38. 38.
    Florenza X, Solano AMS, Centellas F, Martínez-Huitle CA, Brillas E, Garcia-Segura S (2014) Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based on Fenton’s reaction chemistry. Relationship between decolorization, mineralization and products. Electrochim Acta 142:276–288Google Scholar
  39. 39.
    Pereira GF, El-Ghenymy A, Thiam A, Carlesi C, Eguiluz KIB, Salazar-Banda GR, Brillas E (2016) Effective removal of Orange-G azo dye from water by electro-Fenton and photoelectro-Fenton processes using a boron-doped diamond anode. Sep Purif Technol 160:145–151Google Scholar
  40. 40.
    Guinea E, Garrido JA, Rodríguez RM, Cabot P-L, Arias C, Centellas F, Brillas E (2010) Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim Acta 55:2101–2115Google Scholar
  41. 41.
    Garcia-Segura S, Cavalcanti EB, Brillas E (2014) Mineralization of the antibiotic chloramphenicol by solar photoelectro-Fenton: From stirred tank reactor to solar pre-pilot plant. Appl Catal B-Environ 144:588–598Google Scholar
  42. 42.
    Moreira FC, Garcia-Segura S, Boaventura RAR, Brillas E, Vilar VJP (2014) Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl Catal B-Environ 160–161:492–505Google Scholar
  43. 43.
    Antonin VS, Santos MC, Garcia-Segura S, Brillas E (2015) Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix. Water Res 83:31–41Google Scholar
  44. 44.
    Isarain-Chávez E, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, Brillas E (2010) Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B-Environ 96:361–369Google Scholar
  45. 45.
    Isarain-Chávez E, Rodríguez RM, Garrido JA, Arias C, Centellas F, Cabot PL, Brillas E (2010) Degradation of the beta-blocker propranolol by electrochemical advanced oxidation processes based on Fenton’s reaction chemistry using a boron-doped diamond anode. Electrochim Acta 56:215–221Google Scholar
  46. 46.
    Isarain-Chávez E, Cabot PL, Centellas F, Rodríguez RM, Arias C, Garrido JA, Brillas E (2011) Electro-Fenton and photoelectro-Fenton degradations of the drug beta-blocker propranolol using a Pt anode: identification and evolution of oxidation products. J Hazard Mater 185:1228–1235Google Scholar
  47. 47.
    Skoumal M, Rodríguez RM, Cabot PL, Centellas F, Garrido JA, Arias C, Brillas E (2009) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta 54:2077–2085Google Scholar
  48. 48.
    Zhang Y, Gao M-M, Wang X-H, Wang S-G, Liu R-T (2015) Enhancement of oxygen diffusion process on a rotating disk electrode for the electro-Fenton degradation of tetracycline. Electrochim Acta 182:73–80Google Scholar
  49. 49.
    Ledezma Estrada A, Li Y-Y, Wang A (2012) Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process. J Hazard Mater 227–228:41–48Google Scholar
  50. 50.
    Xie YB, Li XZ (2006) Interactive oxidation of photoelectrocatalysis and electro-Fenton for azo dye degradation using TiO2–Ti mesh and reticulated vitreous carbon electrodes. Mater Chem Phys 95:39–50Google Scholar
  51. 51.
    Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631Google Scholar
  52. 52.
    Çelebi MS, Oturan N, Zazou H, Hamdani M, Oturan MA (2015) Electrochemical oxidation of carbaryl on platinum and boron-doped diamond anodes using electro-Fenton technology. Sep Purif Technol 156(Part 3):996–1002Google Scholar
  53. 53.
    Mbaye OMA, Gaye Seye MD, Coly A, Tine A, Oturan MA, Oturan N, Aaron JJ (2013) Photo-induced fluorescence properties of the propanil herbicide and analytical usefulness. Microchem J 110:579–586Google Scholar
  54. 54.
    Abdessalem AK, Bellakhal N, Oturan N, Dachraoui M, Oturan MA (2010) Treatment of a mixture of three pesticides by photo- and electro-Fenton processes. Desalination 250:450–455Google Scholar
  55. 55.
    Oturan MA, Oturan N, Lahitte C, Trevin S (2001) Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent: application to the mineralization of an organic micropollutant, pentachlorophenol. J Electroanal Chem 507:96–102Google Scholar
  56. 56.
    Olvera-Vargas H, Oturan N, Buisson D, Oturan MA (2016) A coupled bio-EF process for mineralization of the pharmaceuticals furosemide and ranitidine: feasibility assessment. Chemosphere 155:606–613Google Scholar
  57. 57.
    Yahya MS, Oturan N, El Kacemi K, El Karbane M, Aravindakumar CT, Oturan MA (2014) Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: kinetics and oxidation products. Chemosphere 117:447–454Google Scholar
  58. 58.
    Oturan MA, Pinson J, Bizot J, Deprez D, Terlain B (1992) Reaction of inflammation inhibitors with chemically and electrochemically generated hydroxyl radicals. J Electroanal Chem 334:103–109Google Scholar
  59. 59.
    Sopaj F, Oturan N, Pinson J, Podvorica F, Oturan MA (2016) Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine. Appl Catal B-Environ 199:331–341Google Scholar
  60. 60.
    Sopaj F, Rodrigo MA, Oturan N, Podvorica FI, Pinson J, Oturan MA (2015) Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem Eng J 262:286–294Google Scholar
  61. 61.
    Ganiyu SO, van Hullebusch ED, Cretin M, Esposito G, Oturan MA (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156(Part 3):891–914Google Scholar
  62. 62.
    El-Ghenymy A, Oturan N, Oturan MA, Garrido JA, Cabot PL, Centellas F, Rodríguez RM, Brillas E (2013) Comparative electro-Fenton and UVA photoelectro-Fenton degradation of the antibiotic sulfanilamide using a stirred BDD/air-diffusion tank reactor. Chem Eng J 234:115–123Google Scholar
  63. 63.
    Haidar M, Dirany A, Sirés I, Oturan N, Oturan MA (2013) Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode. Chemosphere 91:1304–1309Google Scholar
  64. 64.
    Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA (2012) Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere 87:614–620Google Scholar
  65. 65.
    Dirany A, Sirés I, Oturan N, Oturan MA (2010) Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere 81:594–602Google Scholar
  66. 66.
    Le TXH, Bechelany M, Lacour S, Oturan N, Oturan MA, Cretin M (2015) High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon 94:1003–1011Google Scholar
  67. 67.
    Labiadh L, Oturan MA, Panizza M, Hamadi NB, Ammar S (2015) Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J Hazard Mater 297:34–41Google Scholar
  68. 68.
    Bouafia-Chergui S, Oturan N, Khalaf H, Oturan MA (2012) A photo-Fentontreatment of a mixture of three cationic dyes. Procedia Eng 33:181–187Google Scholar
  69. 69.
    Oturan MA, Sirés I, Oturan N, Pérocheau S, Laborde J-L, Trévin S (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624:329–332Google Scholar
  70. 70.
    Özcan A, Şahin Y, Savaş Koparal A, Oturan MA (2008) Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem 616:71–78Google Scholar
  71. 71.
    Hammami S, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2007) Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: application of the experimental design methodology. J Electroanal Chem 610:75–84Google Scholar
  72. 72.
    Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199Google Scholar
  73. 73.
    Michaud P-A, Panizza M, Ouattara L, Diaco T, Foti G, Comninellis C (2003) Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J Appl Electrochem 33:151–154Google Scholar
  74. 74.
    Panizza M, Cerisola G (2003) Influence of anode material on the electrochemical oxidation of 2-naphthol. Part 1. Cyclic voltammetry and potential step experiments. Electrochim Acta 48:3491–3497Google Scholar
  75. 75.
    Foti G, Gandini D, Comninellis C, Perret A, Haenni W (1999) Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes. Electrochem Solid State 2:228–230Google Scholar
  76. 76.
    Zhou M, Yu Q, Lei L (2008) The preparation and characterization of a graphite–PTFE cathode system for the decolorization of C.I. acid red 2. Dyes Pigments 77:129–136Google Scholar
  77. 77.
    Sudoh M, Kodera T, Sakai K (1986) Oxidative degradation of aqueous phenol effluent with electrogenerated Fenton’s reagent. J Chem Eng Jpn 19:513–518Google Scholar
  78. 78.
    Petrucci E, Da Pozzo A, Di Palma L (2016) On the ability to electrogenerate hydrogen peroxide and to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes. Chem Eng J 283:750–758Google Scholar
  79. 79.
    Zhou L, Hu Z, Zhang C, Bi Z, Jin T, Zhou M (2013) Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Sep Purif Technol 111:131–136Google Scholar
  80. 80.
    Badellino C, Rodrigues CA, Bertazzoli R (2006) Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: study for the degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 137:856–864Google Scholar
  81. 81.
    Brillas E, Calpe JC, Casado J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res 34:2253–2262Google Scholar
  82. 82.
    Boye B, Brillas E, Dieng MM (2003) Electrochemical degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation. J Electroanal Chem 540:25–34Google Scholar
  83. 83.
    Boye B, Marième Dieng M, Brillas E (2003) Electrochemical degradation of 2,4,5-trichlorophenoxyacetic acid in aqueous medium by peroxi-coagulation. Effect of pH and UV light. Electrochim Acta 48:781–790Google Scholar
  84. 84.
    Brillas E, Boye B, Baños MÁ, Calpe JC, Garrido JA (2003) Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method. Chemosphere 51:227–235Google Scholar
  85. 85.
    Brillas E, Bastida RM, Llosa E, Casado J (1995) Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode. J Electrochem Soc 142:1733–1741Google Scholar
  86. 86.
    Brillas E, Mur E, Casado J (1996) Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode. J Electrochem Soc 143:49–53Google Scholar
  87. 87.
    Brillas E, Sauleda R, Casado J (1997) Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode. J Electrochem Soc 144:2374–2379Google Scholar
  88. 88.
    Brillas E, Sauleda R, Casado J (1999) Use of an acidic Fe/O2 cell for wastewater treatment: degradation of aniline. J Electrochem Soc 146:4539–4543Google Scholar
  89. 89.
    Boye B, Morième Dieng M, Brillas E (2003) Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid. J Electroanal Chem 557:135–146Google Scholar
  90. 90.
    Brillas E, Baños MÁ, Garrido JA (2003) Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Electrochim Acta 48:1697–1705Google Scholar
  91. 91.
    Brillas E, Boye B, Dieng MM (2003) Peroxi-coagulation and photoperoxi-coagulation treatments of the herbicide 4-chlorophenoxyacetic acid in aqueous medium using an oxygen-diffusion cathode. J Electrochem Soc 150:148–154Google Scholar
  92. 92.
    Flox C, Cabot P-L, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2007) Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl Catal B-Environ 75:17–28Google Scholar
  93. 93.
    Sirés I, Arias C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E (2007) Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere 66:1660–1669Google Scholar
  94. 94.
    Guinea E, Centellas F, Garrido JA, Rodríguez RM, Arias C, Cabot P-L, Brillas E (2009) Solar photoassisted anodic oxidation of carboxylic acids in presence of Fe3+ using a boron-doped diamond electrode. Appl Catal B-Environ 89:459–468Google Scholar
  95. 95.
    Brillas E, Casado J (2002) Aniline degradation by electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 47:241–248Google Scholar
  96. 96.
    Isarain-Chávez E, Rodríguez RM, Cabot PL, Centellas F, Arias C, Garrido JA, Brillas E (2011) Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector. Water Res 45:4119–4130Google Scholar
  97. 97.
    El-Ghenymy A, Garcia-Segura S, Rodríguez RM, Brillas E, El Begrani MS, Abdelouahid BA (2012) Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology. J Hazard Mater 221–222:288–297Google Scholar
  98. 98.
    García O, Isarain-Chávez E, El-Ghenymy A, Brillas E, Peralta-Hernández JM (2014) Degradation of 2,4-D herbicide in a recirculation flow plant with a Pt/air-diffusion and a BDD/BDD cell by electrochemical oxidation and electro-Fenton process. J Electroanal Chem 728:1–9Google Scholar
  99. 99.
    Almeida LC, Garcia-Segura S, Bocchi N, Brillas E (2011) Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: process optimization by response surface methodology. Appl Catal B-Environ 103:21–30Google Scholar
  100. 100.
    Olvera-Vargas H, Oturan N, Oturan MA, Brillas E (2015) Electro-Fenton and solar photoelectro-Fenton treatments of the pharmaceutical ranitidine in pre-pilot flow plant scale. Sep Purif Technol 146:127–135Google Scholar
  101. 101.
    Pérez T, Garcia-Segura S, El-Ghenymy A, Nava JL, Brillas E (2015) Solar photoelectro-Fenton degradation of the antibiotic metronidazole using a flow plant with a Pt/air-diffusion cell and a CPC photoreactor. Electrochim Acta 165:173–181Google Scholar
  102. 102.
    Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229Google Scholar
  103. 103.
    Garza-Campos B, Brillas E, Hernández-Ramírez A, El-Ghenymy A, Guzmán-Mar JL, Ruiz-Ruiz EJ (2016) Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis. J Hazard Mater 319:34–42Google Scholar
  104. 104.
    El-Ghenymy A, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2013) Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell. Chemosphere 91:1324–1331Google Scholar
  105. 105.
    Gozzi F, Sirés I, Thiam A, de Oliveira SC, Junior AM, Brillas E (2017) Treatment of single and mixed pesticide formulations by solar photoelectro-Fenton using a flow plant. Chem Eng J 310(Part 2):503–513Google Scholar
  106. 106.
    Pipi ARF, Sirés I, De Andrade AR, Brillas E (2014) Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere 109:49–55Google Scholar
  107. 107.
    Garza-Campos BR, Guzmán-Mar JL, Reyes LH, Brillas E, Hernández-Ramírez A, Ruiz-Ruiz EJ (2014) Coupling of solar photoelectro-Fenton with a BDD anode and solar heterogeneous photocatalysis for the mineralization of the herbicide atrazine. Chemosphere 97:26–33Google Scholar
  108. 108.
    Garcia-Segura S, Almeida LC, Bocchi N, Brillas E (2011) Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology. J Hazard Mater 194:109–118Google Scholar
  109. 109.
    Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of sunset yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B-Environ 142–143:877–890Google Scholar
  110. 110.
    Garcia-Segura S, Brillas E (2014) Advances in solar photoelectro-Fenton: Decolorization and mineralization of the direct yellow 4 diazo dye using an autonomous solar pre-pilot plant. Electrochim Acta 140:384–395Google Scholar
  111. 111.
    Antonin VS, Garcia-Segura S, Santos MC, Brillas E (2015) Degradation of Evans Blue diazo dye by electrochemical processes based on Fenton’s reaction chemistry. J Electroanal Chem 747:1–11Google Scholar
  112. 112.
    Solano AMS, Garcia-Segura S, Martínez-Huitle CA, Brillas E (2015) Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry. Appl Catal B-Environ 168–169:559–571Google Scholar
  113. 113.
    Thiam A, Sirés I, Centellas F, Cabot PL, Brillas E (2015) Decolorization and mineralization of Allura red AC azo dye by solar photoelectro-Fenton: identification of intermediates. Chemosphere 136:1–8Google Scholar
  114. 114.
    Garcia-Segura S, Brillas E (2016) Combustion of textile monoazo, diazo and triazo dyes by solar photoelectro-Fenton: Decolorization, kinetics and degradation routes. Appl Catal B-Environ 181:681–691Google Scholar
  115. 115.
    Garcia-Segura S, Salazar R, Brillas E (2013) Mineralization of phthalic acid by solar photoelectro-Fenton with a stirred boron-doped diamond/air-diffusion tank reactor: Influence of Fe3+ and Cu2+ catalysts and identification of oxidation products. Electrochim Acta 113:609–619Google Scholar
  116. 116.
    Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2015) Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes. Water Res 75:95–108Google Scholar
  117. 117.
    Alvarez-Gallegos A, Pletcher D (1998) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochim Acta 44:853–861Google Scholar
  118. 118.
    Alverez-Gallegos A, Pletcher D (1999) The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: the removal of phenols and related compounds from aqueous effluents. Electrochim Acta 44:2483–2492Google Scholar
  119. 119.
    Leon CPD, Pletcher D (1995) Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell. J Appl Electrochem 25:307–314Google Scholar
  120. 120.
    Fockedey E, Van Lierde A (2002) Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Res 36:4169–4175Google Scholar
  121. 121.
    Hsiao Y-L, Nobe K (1993) Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton’s reagent. J Appl Electrochem 23:943–946Google Scholar
  122. 122.
    Ma L, Zhou M, Ren G, Yang W, Liang L (2016) A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation. Electrochim Acta 200:222–230Google Scholar
  123. 123.
    Lei Y, Liu H, Shen Z, Wang W (2013) Development of a trickle bed reactor of electro-Fenton process for wastewater treatment. J Hazard Mater 261:570–576Google Scholar
  124. 124.
    Anotai J, C-C S, Tsai Y-C, M-C L (2010) Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. J Hazard Mater 183:888–893Google Scholar
  125. 125.
    Wang C-T, J-L H, Chou W-L, Kuo Y-M (2008) Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode. J Hazard Mater 152:601–606Google Scholar
  126. 126.
    Xu L, Zhao H, Shi S, Zhang G, Ni J (2008) Electrolytic treatment of C.I. acid orange 7 in aqueous solution using a three-dimensional electrode reactor. Dyes Pigments 77:158–164Google Scholar
  127. 127.
    Xiong Y, He C, Karlsson HT, Zhu X (2003) Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol. Chemosphere 50:131–136Google Scholar
  128. 128.
    Liu W, Ai Z, Zhang L (2012) Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. J Hazard Mater 243:257–264Google Scholar
  129. 129.
    Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte. J Electroanal Chem 391:141–147Google Scholar
  130. 130.
    Köleli F, Balun D (2004) Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Appl Catal A-Gen 274:237–242Google Scholar
  131. 131.
    Scialdone O, Galia A, Nero GL, Proietto F, Sabatino S, Schiavo B (2016) Electrochemical reduction of carbon dioxide to formic acid at a tin cathode in divided and undivided cells: effect of carbon dioxide pressure and other operating parameters. Electrochim Acta 199:332–341Google Scholar
  132. 132.
    Sabatino S, Galia A, Saracco G, Scialdone O (2017) Development of an electrochemical process for the simultaneous treatment of wastewater and the conversion of carbon dioxide to higher value products. ChemElectroChem 4:150–159Google Scholar
  133. 133.
    Do JS, Chen CP (1993) In situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide. J Electrochem Soc 140:1632–1637Google Scholar
  134. 134.
    Scialdone O, Galia A, Gattuso C, Sabatino S, Schiavo B (2015) Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. Electrochim Acta 182:775–780Google Scholar
  135. 135.
    Kockmann N (2006) Advanced micro and nanosystems, micro process engineering. Fundamentals, devices, fabrication and application. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  136. 136.
    Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26Google Scholar
  137. 137.
    Paddon CA, Pritchard GJ, Thiemann T, Marken F (2002) Paired electrosynthesis: micro-flow cell processes with and without added electrolyte. Electrochem Commun 4:825–831Google Scholar
  138. 138.
    Suga S, Okajima M, Fujiwara K, Yoshida J-i (2001) “Cation flow” method: a new approach to conventional and combinatorial organic syntheses using electrochemical microflow systems. J Am Chem Soc 123:7941–7942Google Scholar
  139. 139.
    Scialdone O, Galia A, Sabatino S, Vaiana GM, Agro D, Busacca A, Amatore C (2014) Electrochemical conversion of dichloroacetic acid to chloroacetic acid in conventional cell and in two microfluidic reactors. ChemElectroChem 1:116–124Google Scholar
  140. 140.
    Scialdone O, Galia A, Sabatino S, Mira D, Amatore C (2015) Electrochemical conversion of dichloroacetic acid to chloroacetic acid in a microfluidic stack and in a series of microfluidic reactors. ChemElectroChem 2:684–690Google Scholar
  141. 141.
    Scialdone O, Guarisco C, Galia A, Filardo G, Silvestri G, Amatore C, Sella C, Thouin L (2010) Anodic abatement of organic pollutants in water in micro reactors. J Electroanal Chem 638:293–296Google Scholar
  142. 142.
    Scialdone O, Guarisco C, Galia A (2011) Oxidation of organics in water in microfluidic electrochemical reactors: theoretical model and experiments. Electrochim Acta 58:463–473Google Scholar
  143. 143.
    Scialdone O, Galia A, Guarisco C, La Mantia S (2012) Abatement of 1,1,2,2-tetrachloroethane in water by reduction at silver cathode and oxidation at boron doped diamond anode in micro reactors. Chem Eng J 189–190:229–236Google Scholar
  144. 144.
    Scialdone O, Galia A, Sabatino S (2013) Electro-generation of H2O2 and abatement of organic pollutant in water by an electro-Fenton process in a microfluidic reactor. Electrochem Commun 26:45–47Google Scholar
  145. 145.
    Scialdone O, Galia A, Sabatino S (2014) Abatement of acid orange 7 in macro and micro reactors. Effect of the electrocatalytic route. Appl Catal B-Environ 148–149:473–483Google Scholar
  146. 146.
    Khongthon W, Jovanovic G, Yokochi A, Sangvanich P, Pavarajarn V (2016) Degradation of diuron via an electrochemical advanced oxidation process in a microscale-based reactor. Chem Eng J 292:298–307Google Scholar
  147. 147.
    Khongthon W, Pavarajarn V (2016) Effect of nitrate and sulfate contamination on degradation of diuron via electrochemical advanced oxidation in a microreactor. Eng J 20:25–34Google Scholar
  148. 148.
    Sabatino S, Galia A, Scialdone O (2016) Electrochemical abatement of organic pollutants in continuous-reaction systems through the assembly of microfluidic cells in series. ChemElectroChem 3:83–90Google Scholar
  149. 149.
    Křištál J, Kodým R, Bouzek K, Jiřičný V (2008) Electrochemical microreactor and gas-evolving reactions. Electrochem Commun 10:204–207Google Scholar
  150. 150.
    de Loos SRA, van der Schaaf J, Tiggelaar RM, Nijhuis TA, de Croon MHJM, Schouten JC (2010) Gas-liquid dynamics at low Reynolds numbers in pillared rectangular micro channels. Microfluid Nanofluidics 9:131–144Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Civil, Chemical and Environmental EngineeringUniversity of GenoaGenoaItaly
  2. 2.Dipartimento dell’innovazione industriale e digitale, Ingegneria chimica, gestionale, informatica, meccanicaUniversity of PalemoPalermoItaly

Personalised recommendations