Advertisement

Solar-Assisted Electro-Fenton Systems for Wastewater Treatment

  • Enric BrillasEmail author
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 61)

Abstract

Herein, an overview over the performance of emerging electrochemical advanced oxidation processes (EAOPs) such as solar photoelectro-Fenton (SPEF) and related solar-assisted methods to remove organic pollutants from acidic wastewaters is presented. These procedures generate OH at the anode surface from water oxidation and in the bulk from Fenton’s reaction between added Fe2+ and H2O2 generated at a gas diffusion electrode (GDE) fed with pure O2 or compressed air, similarly to the electro-Fenton (EF) process. SPEF involves the additional irradiation of the effluent with sunlight, which causes a synergistic effect on organic destruction due to the formation of more OH from the photolysis of Fe(OH)2+ species and/or the photolysis of complexes of Fe(III) with generated carboxylic acids. Fundamentals of SPEF are explained to better clarify its characteristics on the removal of industrial chemicals, pesticides, dyes, pharmaceuticals, and real wastewaters. Examples with stirred tank reactors and pre-pilot flow plants equipped with electrochemical reactors containing a Pt or a boron-doped diamond anode and a GDE as cathode, coupled to a solar planar or CPC photoreactor, are given. The use of an autonomous flow plant powered by sunlight is examined. Coupled methods of SPEF with solar photocatalysis, photoelectrocatalysis, and biological treatment are described. The effect of experimental variables on the mineralization, current efficiency, and energy consumption is detailed. The decay kinetics of pollutants and the evolution of intermediates and released inorganic ions are discussed. SPEF is more efficient and less expensive than EAOPs like anodic oxidation and EF.

Keywords

Coupled methods with solar photoelectro-Fenton Degradation of dyes Destruction of pharmaceuticals Oxidative action of hydroxyl radicals and sunlight Photolysis of Fe(III)-carboxylate complexes Removal of pesticides Solar photoelectro-Fenton treatment of wastewaters Solar pilot plants with electrolytic cell and CPC photoreactor 

References

  1. 1.
    Brillas E, Martinez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166–167:603–643CrossRefGoogle Scholar
  2. 2.
    Oturan N, Sirés I, Oturan MA, Brillas E (2009) Degradation of pesticides in aqueous medium by electro-Fenton and related methods. A review. J Environ Eng Manage 19:235–255Google Scholar
  3. 3.
    Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367CrossRefGoogle Scholar
  4. 4.
    Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B Environ 202:217–261CrossRefGoogle Scholar
  5. 5.
    Brillas E (2014) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton treatments of organics in waters using a boron-doped diamond anode: a review. J Mex Chem Soc 58:239–255Google Scholar
  6. 6.
    Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229CrossRefGoogle Scholar
  7. 7.
    Yu X, Zhou M, Hu Y, Groenen-Serrano K, Yu F (2014) Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review. Environ Sci Pollut Res 21:8417–8431CrossRefGoogle Scholar
  8. 8.
    Brillas E (2014) A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton. J Braz Chem Soc 25:393–417Google Scholar
  9. 9.
    Ruiz EJ, Arias C, Brillas E, Hernández-Ramírez A, Peralta-Hernández JM (2011) Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere 8:495–501CrossRefGoogle Scholar
  10. 10.
    Flox C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2007) Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl Catal B Environ 75:17–28CrossRefGoogle Scholar
  11. 11.
    Flox C, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2007) Mineralization of herbicide mecoprop by photoelectro-Fenton with UVA and solar light. Catal Today 129:29–36CrossRefGoogle Scholar
  12. 12.
    Ruiz EJ, Hernández-Ramírez A, Peralta-Hernández JM, Arias C, Brillas E (2011) Application of solar photoelectro-Fenton technology to azo dyes mineralization: effect of current density, Fe2+ and dye concentration. Chem Eng J 171:385–392CrossRefGoogle Scholar
  13. 13.
    Thiam A, Sirés I, Brillas E (2015) Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton. Water Res 81:178–187CrossRefGoogle Scholar
  14. 14.
    El-Ghenymy A, Garcia-Segura S, Rodríguez RM, Brillas E, El Begrani MS, Abdelouahid BA (2012) Optimization of the electro-Fenton and solar photoelectro-Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology. J Hazard Mater 221–222:288–297CrossRefGoogle Scholar
  15. 15.
    Garcia-Segura S, Almeida LC, Bocchi N, Brillas E (2011) Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology. J Hazard Mater 194:109–118CrossRefGoogle Scholar
  16. 16.
    Gozzi F, Sirés I, Thiam A, de Oliveira SC, Machulek Jr A, Brillas E (2017) Treatment of single and mixed pesticide formulations by solar photoelectro-Fenton using a flow plant. Chem Eng J 310:503–513CrossRefGoogle Scholar
  17. 17.
    Thiam A, Sirés I, Centellas F, Cabot PL, Brillas E (2015) Decolorization and mineralization of Allura Red AC azo dye by solar photoelectro-Fenton: identification of intermediates. Chemosphere 136:1–8CrossRefGoogle Scholar
  18. 18.
    Salazar R, Garcia-Segura S, Ureta-Zañartu MS, Brillas E (2011) Degradation of disperse azo dyes from waters by solar photoelectro-Fenton. Electrochim Acta 56:6371–6379CrossRefGoogle Scholar
  19. 19.
    Antonin VS, Garcia-Segura S, Santos MC, Brillas E (2015) Degradation of Evans Blue diazo dye by electrochemical processes based on Fenton’s reaction chemistry. J Electroanal Chem 747:1–11CrossRefGoogle Scholar
  20. 20.
    Guinea E, Garrido JA, Rodriguez RM, Cabot PL, Arias C, Centellas F, Brillas E (2010) Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim Acta 55:2101–2115CrossRefGoogle Scholar
  21. 21.
    Almeida LC, Garcia-Segura S, Bocchi N, Brillas E (2011) Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: process optimization by response surface methodology. Appl Catal B Environ 103:21–30CrossRefGoogle Scholar
  22. 22.
    El-Ghenymy A, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2013) Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell. Chemosphere 91:1324–1331CrossRefGoogle Scholar
  23. 23.
    Serra A, Domènech X, Arias C, Brillas E, Peral J (2009) Oxidation of α-methylphenylglycine under Fenton and electro-Fenton conditions in the dark and in the presence of solar light. Appl Catal B Environ 89:12–21CrossRefGoogle Scholar
  24. 24.
    Serra A, Domenech X, Peral J, Arias C, Brillas E (2008) Electrochemical advanced oxidation treatments of acidic aqueous solutions containing the amino acid α-methylphenylglycine using a boron-doped diamond anode. J Environ Eng Manage 18:173–181Google Scholar
  25. 25.
    Garcia-Segura S, Salazar R, Brillas E (2013) Mineralization of phthalic acid by solar photoelectro-Fenton with a stirred boron-doped diamond/air-diffusion tank reactor: influence of Fe3+ and Cu2+ catalysts and identification of oxidation products. Electrochim Acta 113:609–619CrossRefGoogle Scholar
  26. 26.
    Garcia-Segura S, Brillas E, Cornejo-Ponce L, Salazar R (2016) Effect of the Fe3+/Cu2+ ratio on the removal of the recalcitrant oxalic and oxamic acids by electro-Fenton and solar photoelectro-Fenton. Sol Energy 124:242–253CrossRefGoogle Scholar
  27. 27.
    Pipi ARF, Sirés I, De Andrade AR, Brillas E (2014) Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron. Chemosphere 109:49–55CrossRefGoogle Scholar
  28. 28.
    Peng Q, Zhao H, Qian L, Wang Y, Zhao G (2015) Design of a neutral photoelectro-Fenton system with 3D-ordered macroporous Fe2O3/carbon aerogel cathode: high activity and low energy consumption. Appl Catal B Environ 174–175:157–166CrossRefGoogle Scholar
  29. 29.
    Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B Environ 142–143:877–890CrossRefGoogle Scholar
  30. 30.
    Solano AMS, Garcia-Segura S, Martínez-Huitle CA, Brillas E (2015) Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry. Appl Catal B Environ 168:559–571CrossRefGoogle Scholar
  31. 31.
    Isarain-Chávez E, Rodríguez RM, Cabot PL, Centellas F, Arias C, Garrido JA, Brillas E (2011) Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector. Water Res 45:4119–4130CrossRefGoogle Scholar
  32. 32.
    Garcia-Segura S, Brillas E (2016) Combustion of textile monoazo, diazo and triazo dyes by solar photoelectro-Fenton: decolorization, kinetics and degradation routes. Appl Catal B Environ 181:681–691CrossRefGoogle Scholar
  33. 33.
    Salazar R, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Appl Catal B Environ 115–116:107–116CrossRefGoogle Scholar
  34. 34.
    Espinoza C, Romero J, Villegas L, Cornejo-Ponce L, Salazar R (2016) Mineralization of the textile dye Acid Yellow 42 by solar photoelectro-Fenton in a lab.-pilot plant. J Hazard Mater 319:24–33CrossRefGoogle Scholar
  35. 35.
    Zhao H, Chen Y, Peng Q, Wang Q, Zhao G (2017) Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photoelectro-Fenton process. Appl Catal B Environ 203:127–137CrossRefGoogle Scholar
  36. 36.
    Guinea E, Arias C, Cabot PL, Garrido JA, Rodriguez RM, Centellas F, Brillas E (2008) Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Res 42:499–511CrossRefGoogle Scholar
  37. 37.
    Skoumal M, Rodríguez RM, Cabot PL, Centellas F, Garrido JA, Arias C, Brillas E (2009) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta 54:2077–2085CrossRefGoogle Scholar
  38. 38.
    Olvera-Vargas H, Oturan N, Oturan MA, Brillas E (2015) Electro-Fenton and solar photoelectro-Fenton treatments of the pharmaceutical ranitidine in pre-pilot flow plant scale. Sep Purif Technol 146:127–135CrossRefGoogle Scholar
  39. 39.
    Garcia-Segura S, Cavalcanti EB, Brillas E (2014) Mineralization of the antibiotic chloramphenicol by solar photoelectro-Fenton. From stirred tank reactor to solar pre-pilot plant. Appl Catal B Environ 144:588–598CrossRefGoogle Scholar
  40. 40.
    Pérez T, Garcia-Segura S, El-Ghenymy A, Nava JL, Brillas E (2015) Solar photoelectro-Fenton degradation of the antibiotic metronidazole using a flow plant with a Pt/air-diffusion cell and a CPC photoreactor. Electrochim Acta 165:173–181CrossRefGoogle Scholar
  41. 41.
    Moreira FC, Garcia-Segura S, Boaventura RAR, Brillas E, Vilar VJP (2014) Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl Catal B Environ 160–161:492–505CrossRefGoogle Scholar
  42. 42.
    Garcia-Segura S, Brillas E (2014) Advances in solar photoelectro-Fenton: decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant. Electrochim Acta 140:384–395CrossRefGoogle Scholar
  43. 43.
    Garza-Campos B, Brillas E, Hernández-Ramírez A, El-Ghenymy A, Guzmán-Mar JL, Ruiz-Ruiz J (2016) Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis. J Hazard Mater 319:34–42CrossRefGoogle Scholar
  44. 44.
    Peng Z, Yu Z, Wang L, Liu Y, Xiang G, Chen Y, Sun L, Huang J (2016) Synthesis of Fe2O3/TiO2 nanotube and its application in photoelectrocatalytic/photoelectro-Fenton decolorization of rhodamine B. J Adv Oxide Technol 19:34–42Google Scholar
  45. 45.
    Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2015) Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes. Water Res 75:95–108CrossRefGoogle Scholar
  46. 46.
    Moreira FC, Soler J, Fonseca A, Saraiva I, Boaventura RAR, Brillas E, Vilar VJP (2015) Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate. Water Res 81:375–387CrossRefGoogle Scholar
  47. 47.
    Moreira FC, Soler J, Fonseca A, Saraiva I, Boaventura RAR, Brillas E, Vilar VJP (2016) Electrochemical advanced oxidation processes for sanitary landfill leachate remediation: evaluation of operational variables. Appl Catal B Environ 182:161–171CrossRefGoogle Scholar
  48. 48.
    Ye Z, Zhang H, Yang L, Wu L, Qian Y, Geng J, Chen M (2016) Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate. J Hazard Mater 319:51–60CrossRefGoogle Scholar
  49. 49.
    Vidal J, Huilinir C, Salazar R (2016) Removal of organic matter contained in slaughterhouse wastewater using a combination of anaerobic digestion and solar photoelectro-Fenton processes. Electrochim Acta 210:163–170CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Departament de Química Física, Facultat de QuímicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations