Skip to main content

The Waste Management System in China and Greenhouse Gas Emission Inventories

  • Chapter
  • First Online:
Source Separation and Recycling

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 63))

Abstract

The increase in waste generation amounts and its Greenhouse gas (GHG) emissions are two main pressures for the Chinese government. The development process of the waste management system was summarized. The corresponding GHG emissions pattern was studied, and the potential reduction measurements were also proposed based on the different steps for the waste management system. It was found that the total estimated GHG increased from 10.95 million tons (1991) to 72.4 million tons CO2-equiv (2013) on the basis of the IPCC methods. Landfill was the main GHG source, as the corresponding percentage increased to the peak of 82% (1999) and finally to 69.5% (2013) in the period studied. Eastern China was the dominant CO2 emission region, while the percentage decreased from 39.6% (2003) to 26.4% (2013). To get more detailed GHG emissions from landfills, the bottom-to-top method was applied to estimate the corresponding emissions and reduction potential from 1,955 landfills in 2012. The source reduction in MSW and the diversion alternatives for landfills are indirect, while useful GHG mitigation way for the reduction of the terminal disposal amounts and its GHG emissions through the implementation of “pay-as-you-throw” and an environmental protection tax.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EC:

Eastern China

FOD:

First-order decay model

IPCC:

Intergovernmental panel on climate change

LCF:

Landfill gas collection and flaring

LCSR:

Landfill cover soil reactor

LFG:

Landfill gas

MC:

Middle China

MHDC:

Ministry of Housing and Urban-Rural Development of the People’s Republic of China

ML:

Mineral landfill

MSW:

Municipal solid waste

Mt:

Million tons

NC:

Northern China

NE:

Northeastern China

NMS:

Nitrate mineral salts

NW:

Northwestern China

OLCS:

Original landfill cover soil

PVC:

Polyvinyl chloride

RL:

Renewable landfill

RPL:

Refinement process for MSW landfilling

SC:

Southern China

SLCS:

Simulated landfill cover soil

SW:

Southwestern China

References

  1. National Bureau of Statistics of China (NBSC) (2015) China urban construction statistical yearbook (1979–2015). China Plans Press, Beijing (in Chinese)

    Google Scholar 

  2. USEPA (2013) Global mitigation of non-CO2 greenhouse gases 2010-2030, EPA-430-R-13-011, United States Environmental Protection Agency Office of Atmospheric Programs (6207J) Washington, DC, 2005. https://www3.epa.gov/climatechange/Downloads/EPAactivities/MAC_Report_2013-Front_Cover.pdf

  3. Lou Z, Bernd B, Zhu N, Chai X, Li B, Zhao Y (2015) Environmental impacts of a large-scale incinerator with the mixed MSW of high water content from a LCA perspective. J Environ Sci 30:173–179

    Article  Google Scholar 

  4. Ministry of housing and urban-rural development of PRC (MHDC) (2012) The grading lists of sanitary level assessment on MSW landfills and incineration plants. http://std.solidwaste.com.cn/upfile/2013/04/78_1364967479.pdf (in Chinese)

  5. Ministry of housing and urban-rural development of PRC (MHDC) (2009) The report on the 2nd national waste treatment facilities sanitary level assessment project. Technol Municip Solid Waste Treat (4):4–7 (in Chinese)

    Google Scholar 

  6. Cai B, Liu J, Zeng X, Cao D, Liu L, Zhou Y, Zhang Z (2014) Estimation of CH4 emission from landfill in China based on point emission sources. Adv Climate Change Res 5(2):81–91

    Article  Google Scholar 

  7. Zhao Y, Wang L (2003) Conversion of organic carbon on the decomposable organic wastes in anaerobic lysimeters under different temperatures. J Environ Sci 15(3):315–322

    CAS  Google Scholar 

  8. Zhao Y, Wang L, Huang R, Xu D, Gu G (2002) A comparison of refuse attenuation in laboratory and field scale lysimeters. Waste Manag 22:29–35

    Article  CAS  Google Scholar 

  9. Lou Z, Cai B, Zhu N, Zhaob Y, Geng Y, Yua B, Chen W (2017) Greenhouse gas emission inventories from waste sector in China during 1949–2013 and its mitigation potential. J Clean Prod 157:118–124

    Article  Google Scholar 

  10. Bernd B (2008) Pay-as-you-throw – a tool for urban waste management. Waste Manag 28(12):2759

    Article  Google Scholar 

  11. Vogt R, Derreza-Greeven C, Giegrich J Dehoust G, Möck A, Merz C (2015) The climate change mitigation potential of the waste sector, published by the Federal Environmental Agency of Germany

    Google Scholar 

  12. Hussain F, Chaudhry MN, Batool SA (2014) Assessment of key parameters in municipal solid waste management: a prerequisite for sustainability. Int J Sustain Dev World Ecol 21(6):519–525

    Article  Google Scholar 

  13. Zheng L, Song J, Li C, Gao Y, Geng P, Qu B, Lin L (2014) Preferential policies promote municipal solid waste (MSW) to energy in China: current status and prospects. Renew Sust Energ Rev 36:135–148

    Article  Google Scholar 

  14. Lou Z, Wang L, Zhao Y (2011) Consuming un-captured methane from landfill using aged refuse bio-cover. Bioresour Technol 102(3):2328–2332

    Article  CAS  Google Scholar 

  15. Green P, Bousfield I (1983) Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. Nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. Nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. Nov. Int J Syst Bacteriol 33:875–877

    Article  Google Scholar 

  16. Urakami T, Araki H, Suzuki K-I, Komagata K (1993) Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov. Int J Syst Bacteriol 43:504–513

    Article  Google Scholar 

  17. Dedysh SN (1998) Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282:281–284

    Article  CAS  Google Scholar 

  18. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  CAS  Google Scholar 

  19. Dunfield PF (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239

    Article  CAS  Google Scholar 

  20. Im J, Semrau JD (2011) Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett 318:137–142

    Article  CAS  Google Scholar 

  21. Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664

    Article  CAS  Google Scholar 

  22. Belova SE, Baani M, Suzina NE, Bodelier PL, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 3:36–46

    Article  CAS  Google Scholar 

  23. Whittenbury R, Phillips K, Wilkinson J (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    Article  CAS  Google Scholar 

  24. Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323:1–12

    Article  CAS  Google Scholar 

  25. Patel RN, Hou CT, Felix A (1978) Microbial oxidation of methane and methanol: crystallization of methanol dehydrogenase and properties of holo-and apo-methanol dehydrogenase from Methylomonas methanica. J Bacteriol 133:641–649

    CAS  Google Scholar 

  26. Zhao S-J, Hanson R (1984) Isolate 761M: a new type I methanotroph that possesses a complete tricarboxylic acid cycle. Appl Environ Microbiol 48:1237–1242

    CAS  Google Scholar 

  27. Zhao S-J, Hanson R (1984) Variants of the obligate methanotroph isolate 761M capable of growth on glucose in the absence of methane. Appl Environ Microbiol 48:807–812

    CAS  Google Scholar 

  28. Lynch MJ, Wopat AE, O’Connor ML (1980) Characterization of two new facultative methanotrophs. Appl Environ Microbiol 40:400–407

    CAS  Google Scholar 

  29. Dedysh SN (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156

    Article  CAS  Google Scholar 

  30. Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN (2013) Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970)Bowman et al. 1993. Int J Syst Evol Microbiol 63:1096–1104

    Article  CAS  Google Scholar 

  31. Im J, Lee SW, Yoon S, DiSpirito AA, Semrau JD (2011) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 3:174–181

    Article  CAS  Google Scholar 

  32. Fei PA, Wang Q (2008) Analysis on the mechanism and influence factors of methane oxidation in landfill soil covers. Renew Energ Resour 97–101

    Google Scholar 

  33. Kjeldsen CSAP (2004) Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J Environ Qual 33:72–79

    Article  Google Scholar 

  34. Park JR, Moon S, Ahn YM, Kim JY, Nam K (2005) Determination of environmental factors influencing methane oxidation in a sandy landfill cover soil. Environ Technol 26:93–102

    Article  CAS  Google Scholar 

  35. Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Biotechnol 13:79–107

    Article  CAS  Google Scholar 

  36. Chanton J, Abichou T, Langford C, Spokas K, Hater G, Green R, Goldsmith D, Barlaz MA (2011) Observations on the methane oxidation capacity of landfill soils. Waste Manag 31:914–925

    Article  CAS  Google Scholar 

  37. Park J-R, Moon S, Ahn YM, Kim JY, Nam K (2005) Determination of environmental factors influencing methane oxidation in a Sandy landfill cover soil. Environ Technol 26:93–102

    Article  CAS  Google Scholar 

  38. Semrau JD (2011) Current knowledge of microbial community structures in landfills and its cover soils. Appl Microbiol Biotechnol 89:961–969

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lou Ziyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ziyang, L., Zhilin, X., Zhaowen, C., Tiantao, Z., Bofeng, C. (2017). The Waste Management System in China and Greenhouse Gas Emission Inventories. In: Maletz, R., Dornack, C., Ziyang, L. (eds) Source Separation and Recycling. The Handbook of Environmental Chemistry, vol 63. Springer, Cham. https://doi.org/10.1007/698_2017_32

Download citation

Publish with us

Policies and ethics