Separation of Municipal Solid Waste in Treatment Plants

  • Daniel Schingnitz
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 63)


The sustainable management of waste has attained increasing importance due to the rising total amounts of waste, as well as the high diversity of the waste fractions worldwide. Increased urbanization rates are resulting in changes in the economy and demography. The suitable management of generated waste streams and using the high potential of recyclables inside these waste streams are major topics communities have to deal with. Especially in Asian countries, the fast development of the society and the rising amounts of waste is resulting in significant problems in sustainable waste management. As the largest emerging country with the largest population in the world, China faces different waste treatment situations than other developing countries. Several technologies can be used for waste treatment depending on the amounts and compositions of the waste streams. Recycling processes should be used for material recovery, biological treatments for appropriate streams, as well as thermal treatments for energy recovery. Landfills for the disposal of residues generated by the other treatments are also necessary. In the challenge of avoiding the presence of biodegradable waste in landfills and increasing recycling, mechanical biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades in Europe. Among the conditions and local challenges in countries in Asia, which are at the beginning in implementing a regulated waste management system, MBT technologies can be a promising approach.


Mechanical biological treatment Municipal solid waste Refuse-derived fuel Waste composition Waste management 


  1. 1.
    Statistisches Bundesamt (2015) Haushaltsabfälle (ohne Elektrogeräte) 2014 (residual wastes (without electric devices) 2014). Germany, Published
  2. 2.
    Yang C (2011) Municipal solid waste management in an urban area of China: case studies of Shanghai, China and Linköping, Sweden. Linköping University, Sweden. Master’s Thesis, ISRN: LIU-TEMAV/MPSSD-A--12/007--SEGoogle Scholar
  3. 3.
    Messenger B (2013) Where next: for the European waste derived duels marked? In: Waste management world. INDUSTRIEMAGAZIN Verlag GmbH, Austria. Published
  4. 4.
    Balhar M, Vielhaber B (2015) Zukunft der MBA bei vermindertem Bioabfallanteil – Chancen für Abfallbiogasanlagen (Future of MBT in case of reduced contents of biowastes – chances of biogas production from waste). Eigenverlag des Forums für Abfallwirtschaft und Altlasten e.V., Pirna, Germany, pp 49–54. ISBN 978-3-934253-90-2Google Scholar
  5. 5.
    Prognos (2014) Analyse der Situation der Vorbehandlungskapazitäten in Deutschland und Thesen für eine Abfallwirtschaft im Gleichgewicht (Analysis of the situation of pre-treatment capacities in Germany and theses for a waste management in balance). Green Paper, Prognos AG, Berlin, GermanyGoogle Scholar
  6. 6.
    Thiel S (2013) Ersatzbrennstoff-Kraftwerke in Deutschland und Österreich (RDF power plants in Germany and Austria). In: Energie aus Abfall. TK Verlag Karl Thomé-Kozmiensky, Germany, pp 837–852. ISBN 978-3-935317-92-4Google Scholar
  7. 7.
    Bayerisches Landesamt für Umwelt (LfU) (2012) Restmüllzusammensetzung, Einflussfaktoren, Abhängigkeit von lokalen abfallwirtschaftlichen Rahmenbedingungen – EFRE-Ziel-2-Gebiete in Bayern (Composition of residual waste, influencing factor, dependence on regional waste management framework – EFRE-Goal-2-regions in Bavaria). Eigendruck der Druckerei Bayrisches Landesamt für Umwelt, Augsburg, GermanyGoogle Scholar
  8. 8.
    Mohee R, Mudhoo A (2012) Energy from biomass in Mauritius: overview of research and applications. In: Waste to energy: opportunities and challenges for developing and transitioning economies. Springer-Verlag, London, Great BritainGoogle Scholar
  9. 9.
    Chen XD, Geng Y, Fujita T (2010) An overview of municipal solid waste management in China. In: Waste management, vol 30. Elsevier Ltd, pp 716–724CrossRefGoogle Scholar
  10. 10.
    Raninger B (2009) Management and utilization of municipal and agricultural bioorganic waste in Europe and China. Workshop, Nanyang Technological University, Singapore, ChinaGoogle Scholar
  11. 11.
    Zhu MH, FanXi M, Rovetta A, He Q, Vicentini F, Liu BK, Giusti A, Liu Y (2009) Municipal solid waste management in Pudong New Area, China. In: Waste management, vol 29. Elsevier Ltd, pp 1227–1233Google Scholar
  12. 12.
    Lianghu S, Huang S, Dongjie N, Xiaoli C, Yongfeng N, Youcai Z (2014) Municipal solid waste management in China. In: Municipal solid waste management in Asia and the Pacific Islands: challenges and strategic solutions. Springer-Verlag, Singapore, China, pp 95–112CrossRefGoogle Scholar
  13. 13.
    Linzner R, Salhofer S (2014) Municipal solid waste recycling and the significance of informal sector in China. In: Waste management & research, vol 32. Sage Publications, London, Great Britain, pp 896–907Google Scholar
  14. 14.
    Bonnet M, Viertel JL (2007) Herstellung und Verwertung von Ersatzbrennstoffen unter besonderer Berücksichtigung des Werkstoffes PVC (Production and utilization of refuse-derived fuels by specific consideration of the material grad PVC). In: UmweltMagazin, 03/2007. Springer-VDI-Verlag GmbH & Co. KG, Cologne, Germany, pp 38–40Google Scholar
  15. 15.
    Schingnitz D (2011) Entwicklung eines Schnelltestsystems zur Bestimmung brennstoffrelevanter Parameter von Ersatzbrennstoffen (Development of a rapid test for determination of fuel-relevant parameters of refuse-derived fuels). Dissertation, Technical University of Dresden, Eigenverlag des Forums für Abfallwirtschaft und Altlasten e.V., Pirna, Germany. ISBN 978-3-934253-77-3Google Scholar
  16. 16.
    Sächsisches Landesamt für Umwelt und Geologie (LfUG) (2001) Anlagen zur Verbrennung und mechanisch-biologischen Behandlung von Siedlungsabfällen (Treatment plants for combustion and mechanical biological treatment of municipal solid waste), Dresden, GermanyGoogle Scholar
  17. 17.
    Gehrmann HJ, Seifert H, Beckmann M, Glorius T (2012) Ersatzbrenn-stoffe in der Kraftwerkstechnik (Usage of solid recovered fuels in power plants). In: Chemie Ingenieur Technik, vol 84(7). Wiley-VCH Verlag GmbH & co, KGaA, Weinheim, Germany, pp 1085–1098CrossRefGoogle Scholar
  18. 18.
    Tai J, Zhang W, Che Y, Feng D (2011) Municipal solid waste source-separated collection in China: a comparative analysis. In: Waste management, vol 31. Elsevier Ltd, pp 1673–1682CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Waste Management and Circular EconomyTechnische Universität DresdenDresdenGermany

Personalised recommendations