Skip to main content

Detection of Pharmaceuticals in the Environment

  • Chapter
  • First Online:
Ecopharmacovigilance

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 66))

Abstract

In this chapter, for articles addressing drugs as pollutants of natural and wastewater, we discuss the temporal distribution of studies, as well as the main countries of origin for such studies. Focus is given to those articles with more than 200 citations. The main sampling techniques, sample extraction, and detection methods accepted by the USEPA and USGS (based on LC-MS/MS and LC-MS) are reviewed, as well as those methods not based on MS, between 2014 and 2017. From this analysis, we propose directions for future research. Finally, a case study is presented that addresses the analysis of the surface waters of the Izúcar de Matamoros region and the Atoyac River in Puebla, as well as the Zahuapan River in Tlaxcala, Mexico. By GC/MS, quantitative determination of naproxen, diclofenac, and triclosan, at stations on the Zahuapan (Tlaxcala), Atoyac, and Nexapa (Puebla) rivers, was performed during the period of 2012–2013. We found that 30% of the publications related with drugs as pollutants of natural and wastewater were published between 2014 and 2017. Spain has published the most of such articles (accounting for 25% of all publications). Three of the articles have more than 1,000 citations. HPLC/MS/MS was the most commonly used method, followed by GC/MS. However, less sophisticated detection alternatives were also used. GC/MS was used to demonstrate the presence of naproxen, diclofenac, triclosan, and carbamazepine in the Mexican Central Plateau and the inability of the wastewater treatment plants (WWTPs) to remove completely these contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sneader W (2000) The discovery of aspirin: a reappraisal. BMJ 321(7276):1591–1594

    Article  CAS  Google Scholar 

  2. Diggins FWE (1999) The true history of the discovery of penicillin, with refutation of the misinformation in the literature. Br J Biomed Sci 56(2):83–93

    CAS  Google Scholar 

  3. Hignite C, Azarnoff DL (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20(2):337–341

    Article  CAS  Google Scholar 

  4. Aherne GW, Hardcastle A, Nield AH (1990) Cytotoxic drugs and the aquatic environment: estimation of bleomycin in river and water samples. J Pharm Pharmacol 42(10):741–742

    Article  CAS  Google Scholar 

  5. Stumpf M, Ternes TA, Wilken RD, Rodrigues SV, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225(1):135–141

    Article  Google Scholar 

  6. Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1):109–118

    Article  CAS  Google Scholar 

  7. Belfroid AC, Van der Horst A, Vethaak AD, Schäfer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Sci Total Environ 225(1):101–108

    Article  CAS  Google Scholar 

  8. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants – I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(1):81–90

    Article  CAS  Google Scholar 

  9. Ahrer W, Scherwenk E, Buchberger W (2001) Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrospray mass spectrometry. J Chromatogr A 910(1):69–78

    Article  CAS  Google Scholar 

  10. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1):5–17

    Article  CAS  Google Scholar 

  11. Snyder SA, Westerhoff P, Yoon Y, Sedlak DL (2003) Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ Eng Sci 20(5):449–469

    Article  CAS  Google Scholar 

  12. Boyd GR, Reemtsma H, Grimm DA, Mitra S (2003) Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci Total Environ 311(1):135–149

    Article  CAS  Google Scholar 

  13. Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31(1):36–44

    Article  CAS  Google Scholar 

  14. Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environ Sci Technol 37(7):1241–1248

    Article  CAS  Google Scholar 

  15. Rodriguez-Mozaz S, de Alda MJL, Barceló D (2004) Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction–liquid chromatography–mass spectrometry. J Chromatogr A 1045(1):85–92

    Article  CAS  Google Scholar 

  16. Weigel S, Berger U, Jensen E, Kallenborn R, Thoresen H, Hühnerfuss H (2004) Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere 56(6):583–592

    Article  CAS  Google Scholar 

  17. Cahill JD, Furlong ET, Burkhardt MR, Kolpin D, Anderson LG (2004) Determination of pharmaceutical compounds in surface-and ground-water samples by solid-phase extraction and high-performance liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A 1041(1):171–180

    Article  CAS  Google Scholar 

  18. Carballa M, Omil F, Lema JM, Llompart M, Garcıa-Jares CK, Rodrıguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926

    Article  CAS  Google Scholar 

  19. Lindqvist N, Tuhkanen T, Kronberg L (2005) Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res 39(11):2219–2228

    Article  CAS  Google Scholar 

  20. Petrović M, Hernando MD, Díaz-Cruz MS, Barceló D (2005) Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. J Chromatogr A 1067(1):1–14

    Article  CAS  Google Scholar 

  21. Batt AL, Bruce IB, Aga DS (2006) Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ Pollut 142(2):295–302

    Article  CAS  Google Scholar 

  22. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2007) Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 1161(1):132–145

    Article  CAS  Google Scholar 

  23. Tamtam F, Mercier F, Le Bot B, Eurin J, Dinh QT, Clément M, Chevreuil M (2008) Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393(1):84–95

    Article  CAS  Google Scholar 

  24. Rosal R, Rodríguez A, Perdigón-Melón JA, Petre A, García-Calvo E, Gómez MJ, Agüera A, Fernández-Alba AR (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44(2):578–588

    Article  CAS  Google Scholar 

  25. WHO (World Health Organization) (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva, p 541

    Google Scholar 

  26. INECC-CCA (2010) Manual de métodos de muestreo y preservación de muestras de las sustancias prioritarias para las matrices prioritarias del PRONAME. México, p 55

    Google Scholar 

  27. Migliaccio KW, Harmel D, Smiley PC (2010) Surface water quality sampling in streams and canals. In: Li Y, Migliaccio K (eds) Water quality concepts, sampling, and analyses. CRC Press, Boca Ratón

    Google Scholar 

  28. Anderson CW, Rounds SA (2010) Use of continuous monitors and autosamplers to predict unmeasured waterquality constituents in tributaries of the Tualatin River, Oregon. U.S. Geological Survey scientific investigations report 2010–5008, p 76

    Google Scholar 

  29. Alvarez DA (2010) Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies. U.S. Geological Survey, techniques and methods 1–D4, p 28

    Google Scholar 

  30. Bayen S, Segovia E, Loh LL, Burger DF, Eikaas HS, Kelly BC (2014) Application of polar organic chemical integrative sampler (POCIS) to monitor emerging contaminants in tropical waters. Sci Total Environ 482-483:15–22

    Article  CAS  Google Scholar 

  31. Primel E, Caldas S, Escarrone A (2012) Multi-residue analytical methods for the determination of pesticides and PPCPs in water by LC-MS/MS: a review. Special issue: recent advances in separation science. Open Chem 10(3):876–899

    Article  Google Scholar 

  32. Dasgupta D, Sengupta TK (2015) Techniques and methods: detection of antibiotics in environmental samples. In: Mendez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs. Formatex Research Center, Badajoz

    Google Scholar 

  33. Aparicio I, Martín J, Santos JL, Malvar JL, Alonso E (2017) Stir bar sorptive extraction and liquid chromatography–tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters. J Chromatogr A 1500:43–52

    Article  CAS  Google Scholar 

  34. Pintado-Herrera MG, González-Mazo E, Lara-Martín PA (2014) Atmospheric pressure gas chromatography–time-of-flight-mass spectrometry (APGC–ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE). Anal Chim Acta 851:1–13

    Article  CAS  Google Scholar 

  35. Socas-Rodríguez B, Hernández-Borges J, Asensio-Ramos M, Herrera-Herrera AV, Palenzuela JA, Rodríguez-Delgado MÁ (2014) Determination of estrogens in environmental water samples using 1, 3-dipentylimidazolium hexafluorophosphate ionic liquid as extraction solvent in dispersive liquid–liquid microextraction. Electrophoresis 35(17):2479–2487

    Article  CAS  Google Scholar 

  36. Aftafa C, Pelit FO, Yalçinkaya EE, Turkmen H, Kapdan İ, Ertaş FN (2014) Ionic liquid intercalated clay sorbents for micro solid phase extraction of steroid hormones from water samples with analysis by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1361:43–52

    Article  CAS  Google Scholar 

  37. Moschet C, Vermeirssen EL, Singer H, Stamm C, Hollender J (2015) Evaluation of in-situ calibration of Chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers. Water Res 71:306–317

    Article  CAS  Google Scholar 

  38. Caban M, Lis E, Kumirska J, Stepnowski P (2015) Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS (SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci Total Environ 538:402–411

    Article  CAS  Google Scholar 

  39. del Carmen Hurtado-Sánchez M, Lozano VA, Rodríguez-Cáceres MI, Durán-Merás I, Escandar GM (2015) Green analytical determination of emerging pollutants in environmental waters using excitation–emission photoinduced fluorescence data and multivariate calibration. Talanta 134:215–223

    Article  CAS  Google Scholar 

  40. Křesinová Z, Linhartová L, Petrů K, Krejčová L, Šrédlová K, Lhotský O, Kameník Z, Cajthaml T (2016) Method for analysis of psychopharmaceuticals in real industrial wastewater and groundwater with suspended organic particulate matter using solid phase extraction disks extraction and ultra-high performance liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A 1440:15–22

    Article  CAS  Google Scholar 

  41. Speltini A, Sturini M, Maraschi F, Consoli L, Zeffiro A, Profumo A (2015) Graphene-derivatized silica as an efficient solid-phase extraction sorbent for pre-concentration of fluoroquinolones from water followed by liquid-chromatography fluorescence detection. J Chromatogr A 1379:9–15

    Article  CAS  Google Scholar 

  42. Racamonde I, Rodil R, Quintana JB, Sieira BJ, Kabir A, Furton KG, Cela R (2015) Fabric phase sorptive extraction: a new sorptive microextraction technique for the determination of non-steroidal anti-inflammatory drugs from environmental water samples. Anal Chim Acta 865:22–30

    Article  CAS  Google Scholar 

  43. Guedes-Alonso R, Santana-Viera S, Sosa-Ferrera Z, Santana-Rodríguez JJ (2015) Molecularly imprinted solid-phase extraction coupled with ultra high performance liquid chromatography and fluorescence detection for the determination of estrogens and their metabolites in wastewater. J Sep Sci 38(22):3961–3968

    Article  CAS  Google Scholar 

  44. Wooding M, Rohwer ER, Naudé Y (2017) Determination of endocrine disrupting chemicals and antiretroviral compounds in surface water: a disposable sorptive sampler with comprehensive gas chromatography–time-of-flight mass spectrometry and large volume injection with ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1496:122–132

    Article  CAS  Google Scholar 

  45. Jennings WG, Poole CF (2012) Milestones in the development of gas chromatography, in gas chromatography. Elsevier, Amsterdam, pp 1–17

    Book  Google Scholar 

  46. Poole CF (2012) In: Poole CF (ed) Gas chromatography. Elsevier, Amsterdam

    Google Scholar 

  47. Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D (2013) In: Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D (eds) Liquid chromatography. Elsevier, Amsterdam

    Google Scholar 

  48. Scognamiglio V, Antonacci A, Patrolecco L, Lambreva M, Litescu SC, Ghuge S, Rea G (2016) Analytical tools monitoring endocrine disrupting chemicals. TrAC Trends Anal Chem 80:555–567

    Article  CAS  Google Scholar 

  49. USEPA (United States Environmental Protection Agency) (2007) Method 1694: pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS. Washington

    Google Scholar 

  50. Cimetiere N, Soutrel I, Lemasle M, Laplanche A, Crocq A (2013) Standard addition method for the determination of pharmaceutical residues in drinking water by SPE–LC–MS/MS. Environ Technol 34(22):3031–3041

    Article  CAS  Google Scholar 

  51. Furlong ET, Werner SL, Anderson BD, Cahill JD (2008) Determination of human-health pharmaceuticals in filtered water by chemically modified styrene-divinylbenzene resin-based solid-phase extraction and high-performance liquid chromatography/mass spectrometry. U.S. Geological Survey Techniques and Methods, book 5, sec. B, Chap. B5, p 56

    Google Scholar 

  52. Mokh S, El Khatib M, Koubar M, Daher Z, Al Iskandarani M (2017) Innovative SPE-LC-MS/MS technique for the assessment of 63 pharmaceuticals and the detection of antibiotic-resistant-bacteria: a case study natural water sources in Lebanon. Sci Total Environ 609:830–841

    Article  CAS  Google Scholar 

  53. Meng T, Cheng W, Wang M, Wan T, Cheng M, Zhang CC, Jia ZY (2017) The distribution of antibiotics in water of a river basin in South China. IOP Conf Ser Earth Environ Sci 82:012078

    Article  Google Scholar 

  54. Kay P, Hughes SR, Ault JR, Ashcroft AE, Brown LE (2017) Widespread, routine occurrence of pharmaceuticals in sewage effluent, combined sewer overflows and receiving waters. Environ Pollut 220:1447–1455

    Article  CAS  Google Scholar 

  55. Sghaier RB, Net S, Ghorbel-Abid I, Bessadok S, Le Coz M, Hassan-Chehimi DB, Trabelsi-Ayadi M, Tackx M, Ouddane B (2017) Simultaneous detection of 13 endocrine disrupting chemicals in water by a combination of SPE-BSTFA derivatization and GC-MS in transboundary rivers (France-Belgium). Water Air Soil Pollut 228(1):2

    Article  CAS  Google Scholar 

  56. Robles-Molina J, Lara-Ortega FJ, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2014) Multi-residue method for the determination of over 400 priority and emerging pollutants in water and wastewater by solid-phase extraction and liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 1350:30–43

    Article  CAS  Google Scholar 

  57. Ghobadi M, Yamini Y, Ebrahimpour B (2014) SPE coupled with dispersive liquid–liquid microextraction followed by GC with flame ionization detection for the determination of ultra-trace amounts of benzodiazepines. J Sep Sci 37(3):287–294

    Article  CAS  Google Scholar 

  58. Melo SM, Brito NM (2014) Analysis and occurrence of endocrine disruptors in Brazilian water by HPLC-fluorescence detection. Water Air Soil Pollut 225(1):1783

    Article  CAS  Google Scholar 

  59. Xiao P, Weibel N, Dudal Y, Corvini PFX, Shahgaldian P (2015) A cyclodextrin-based polymer for sensing diclofenac in water. J Hazard Mater 299:412–416

    Article  CAS  Google Scholar 

  60. Nunes CN, Pauluk LE, Dos Anjos VE, Lopes MC, Quináia SP (2015) New approach to the determination of contaminants of emerging concern in natural water: study of alprazolam employing adsorptive cathodic stripping voltammetry. Anal Bioanal Chem 407(20):6171–6179

    Article  CAS  Google Scholar 

  61. Salvatierra-Stamp VDC, Ceballos-Magaña SG, Gonzalez J, Jurado JM, Muñiz-Valencia R (2015) Emerging contaminant determination in water samples by liquid chromatography using a monolithic column coupled with a photodiode array detector. Anal Bioanal Chem 407(16):4661–4670

    Article  CAS  Google Scholar 

  62. del Carmen Salvatierra-Stamp V, Ceballos-Magaña SG, Gonzalez J, Ibarra-Galván V, Muñiz-Valencia R (2015) Analytical method development for the determination of emerging contaminants in water using supercritical-fluid chromatography coupled with diode-array detection. Anal Bioanal Chem 407(14):4219–4226

    Article  CAS  Google Scholar 

  63. Le MD, Duong HA, Nguyen MH, Sáiz J, Pham HV, Mai TD (2016) Screening determination of pharmaceutical pollutants in different water matrices using dual-channel capillary electrophoresis coupled with contactless conductivity detection. Talanta 160:512–520

    Article  CAS  Google Scholar 

  64. Pérez RL, Escandar GM (2016) Multivariate calibration-assisted high-performance liquid chromatography with dual UV and fluorimetric detection for the analysis of natural and synthetic sex hormones in environmental waters and sediments. Environ Pollut 209:114–122

    Article  CAS  Google Scholar 

  65. Olatunji OS, Fatoki OS, Opeolu BO, Ximba BJ, Chitongo R (2017) Determination of selected steroid hormones in some surface water around animal farms in Cape Town using HPLC-DAD. Environ Monit Assess 189(7):363

    Article  CAS  Google Scholar 

  66. Biache C, Navarro A, Czechowski F, Lu Y, Philip RP (2015) Thiosteranes in samples impacted by fecal materials and their potential use as marker of sewage input. Environ Pollut 196:268–275

    Article  CAS  Google Scholar 

  67. Navarro A, Herrera J, Marrugo J, Bayonne J, Moral L (2014) Organic micro-pollutants in rivers of Mexico: the case of the river Nexapa Rivers. In: Ramos M, Aguilera V (eds) The engineering sciences and technology, handbook T-IV. ECORFAN, Valle de Santiago, pp 49–63

    Google Scholar 

  68. Madikizela LM, Tavengwa NT, Chimuka L (2017) Status of pharmaceuticals in African water bodies: occurrence, removal and analytical methods. J Environ Manag 15(193):211–220

    Article  CAS  Google Scholar 

  69. Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47(2):661–677

    Article  CAS  Google Scholar 

  70. McEneff G, Schmidt W, Quinn B (2015) EPA research programme 2014–2020. Pharmaceuticals in the aquatic environment: a short summary of current knowledge and the potential impacts on aquatic biota and humans. EPA research report 142

    Google Scholar 

  71. Lyons G (2014) Pharmaceuticals in the environment: a growing threat to our tap water and wildlife. A CHEM trust report

    Google Scholar 

  72. Li Y, Zhu G, Ng WJ, Tan SK (2014) A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Sci Total Environ 468–469:908–932

    Article  CAS  Google Scholar 

  73. Auvinen H, Havran I, Hubau L, Vanseveren L, Gebhardt W, Linnemann V, Van Oirschot D, Du Laing G, Rousseau DP (2017) Removal of pharmaceuticals by a pilot aerated subsurface flow constructed wetland treating municipal and hospital wastewater. Ecol Eng 100:157–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amado Enrique Navarro-Frómeta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isaac-Olivé, K., Navarro-Frómeta, A.E. (2017). Detection of Pharmaceuticals in the Environment. In: Gómez-Oliván, L. (eds) Ecopharmacovigilance. The Handbook of Environmental Chemistry, vol 66. Springer, Cham. https://doi.org/10.1007/698_2017_165

Download citation

Publish with us

Policies and ethics