Skip to main content

Control of Environmental Pollution Caused by Pharmaceuticals

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 66))

Abstract

In recent years environmental research has centered on emerging contaminants, outstanding among which are pharmaceutical products. Although pharmaceuticals have been detected in aquatic ecosystems only at trace levels, they have been shown to induce toxic effects in aquatic organisms since they are designed to be biologically active in living organisms and persistent to biodegradation and to have long half-lives. Effluents from domestic, hospital and industrial sources, sewage treatment plant effluent, and the inappropriate disposal of unused or expired medicines are the principal sources of emission of pharmaceuticals into the environment. Conventional methods of wastewater treatment prove insufficient for the complete removal of pharmaceuticals; however, research is now being focused on advanced oxidation processes to remove pharmaceutical products. Information on the fate and effects of pharmaceuticals in the environment provides the groundwork from which to assess their environmental risk and identify possible risk management strategies, as well as for putting in place stricter regulations on the fate of this type of contaminants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bowe L (2016) Investigating emergent contaminants: pharmaceutical impacts and possible solutions. http://penbay.net/pollution/pharmaceut_pollutants_2016_leah_bowe.pdf. Accessed 20 Sept 2017

  2. World Health Organization (2016) WHO Collaborating Centre for Drug Statistics and Methodology. https://www.whocc.no/atc_ddd_index/. Accessed 20 Sept 2017

  3. Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environ Health Perspect 111(5):757–774

    Article  CAS  Google Scholar 

  4. Environmental Protection Agency (2008) United States Environmental Protection Agency. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=201706. Accessed 21 Sept 2017

  5. Lapworth DJ, Baran N, Stuart ME et al (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  6. Verlicchi P, Al Aukidy M, Galletti A et al (2012) Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ 430:109–118

    Article  CAS  Google Scholar 

  7. Vera-Candioti L, García MG, Galera MM et al (2008) Chemometric assisted solid-phase microextraction for the determination of anti-inflammatory and antiepileptic drugs in river water by liquid chromatography-diode array detection. J Chromatogr A 1211(1):22–32

    Article  CAS  Google Scholar 

  8. Gros M, Petrović M, Barceló D (2006) Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 70(4):678–690

    Article  CAS  Google Scholar 

  9. Jahnke A, Gandrass J, Ruck W (2004) Simultaneous determination of alkylphenol ethoxylates and their biotransformation products by liquid chromatography/electrospray ionisation tandem mass spectrometry. J Chromatogr A 1035(1):115–122

    Article  CAS  Google Scholar 

  10. Benijts T, Dams R, Lambert W et al (2004) Countering matrix effects in environmental liquid chromatography-electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals. J Chromatogr A 1029(1):153–159

    Article  CAS  Google Scholar 

  11. Zrostlıkova J, Hajšlová J, Poustka J et al (2002) Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography-electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. J Chromatogr A 973(1):13–26

    Article  Google Scholar 

  12. Daughton CG (2008) Pharmaceuticals as environmental pollutants: the ramifications for human exposure. International encyclopedia of public health, vol 5. Academic Press, Oxford, pp 66–102

    Chapter  Google Scholar 

  13. K’oreje KO, Vergeynst L, Ombaka D et al (2016) Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 149:238–244

    Article  CAS  Google Scholar 

  14. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399(1):251–275

    Article  CAS  Google Scholar 

  15. Kern S, Baumgartner R, Helbling DE et al (2010) A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. J Environ Monit 12(11):2100–2111

    Article  CAS  Google Scholar 

  16. Rodriguez-Mozaz S, de Alda MJL, Barceló D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J Chromatogr A 1152(1):97–115

    Article  CAS  Google Scholar 

  17. Daughton CG (2001) Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry: pharmaceuticals in the environment. J Am Soc Mass Spectrom 12(10):1067–1076

    Article  CAS  Google Scholar 

  18. The World Bank Group (2013) Sanitation, hygiene and wastewater resource guide: introduction to the wastewater treatment process. http://water.worldbank.org/shw-resource-guide/infrastructure/menu-technical-options/wastewater-treatment. Accessed 25 Sept 2017

  19. Pescod MB (1992) Wastewater treatment and use in agriculture. FAO irrigation and drain paper 47

    Google Scholar 

  20. Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review. Global NEST J 10(3):376–385

    Google Scholar 

  21. Pieczyńska A, Fiszka Borzyszkowska A, Ofiarska A et al (2017) Removal of cytostatic drugs by AOPs: a review of applied processes in the context of green technology. Crit Rev Environ Sci Technol 17:58

    Google Scholar 

  22. Kommineni S, Zoeckler J, Stocking A et al (2000) Advanced oxidation processes. Treatment technologies for removal of methyl tertiary butyl ether (MTBE) from drinking water: air stripping, advanced oxidation processes, granular activated carbon and synthetic resin adsorbents2nd edn. National Water Research Institute, Fountain Valley, pp 109–208

    Google Scholar 

  23. Sharma S, Ruparelia JP, Patel ML (2011) A general review on advanced oxidation processes for wastewater treatment. In: International conference on current trends in technology. Institute of Technology, Nirma University, Ahmadabad, pp 382–481

    Google Scholar 

  24. Mota ALN, Albuquerque LF, Beltrame LC et al (2008) Advanced oxidation processes and their application in the petroleum industry: a review. Braz J Pet Gas 2(3):122–142

    Google Scholar 

  25. Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environ Pollut 114(3):471–492

    Article  CAS  Google Scholar 

  26. Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Article  Google Scholar 

  27. Zhou Q, Zhang J, Fu J et al (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606(2):135–150

    Article  CAS  Google Scholar 

  28. Boening DW (1999) An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess 55(3):459–470

    Article  CAS  Google Scholar 

  29. Ondarza PM, Miglioranza KSB, Gonzalez M et al (2010) Organochlorine compounds in common carp (Cyprinus carpio) from Patagonia Argentina. J Braz Soc Ecotoxicol 5(1):41–47

    Article  Google Scholar 

  30. De la Lanza G, Hernández S, Carbajal JL (2000) Organismos indicadores de la calidad del agua y contaminación (bioindicadores). Plaza y Valdés, Mexico City, pp 17–39

    Google Scholar 

  31. Sarkar A, Ray D, Shrivastava AN et al (2006) Molecular biomarkers: their significance and application in marine pollution monitoring. Ecotoxicology 15(4):333–340

    Article  CAS  Google Scholar 

  32. Bucheli TD, Fent K (1995) Induction of cytochrome P450 as a biomarker for environmental contamination in aquatic ecosystems. Crit Rev Environ Sci Technol 25(3):201–268

    Article  CAS  Google Scholar 

  33. Valavanidis A, Vlahogianni T, Dassenakis M et al (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64(2):178–189

    Article  CAS  Google Scholar 

  34. Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19(2):137–161

    Article  CAS  Google Scholar 

  35. Melancon MJ, Alscher R, Benson W et al (1992) Metabolic products as biomarkers. In: Huggett RJ (ed) Biomarkers: biochemical, physiological and histological markers of anthropogenic stress. Lewis, Boca Raton, pp 87–124

    Google Scholar 

  36. Sanders BM (1993) Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol 23(1):49–75

    Article  CAS  Google Scholar 

  37. Li ZH, Zlabek V, Velisek J et al (2011) Acute toxicity of carbamazepine to juvenile rainbow trout (Oncorhynchus mykiss): effects on antioxidant responses, hematological parameters and hepatic EROD. Ecotoxicol Environ Saf 74(3):319–327

    Article  CAS  Google Scholar 

  38. Moss DW, Henderson AR, Kochmar JF (1986) Enzymes: principles of diagnostic enzymology and the aminotransferases. In: Tietz NW (ed) Textbook of clinical chemistry. WB Saunders, Philadelphia, pp 663–678

    Google Scholar 

  39. Pruett SB, Fan R, Zheng Q et al (2003) Modeling and predicting immunological effects of chemical stressors: characterization of a quantitative biomarker for immunological changes caused by atrazine and ethanol. Toxicol Sci 75(2):343–354

    Article  CAS  Google Scholar 

  40. Wester PW, Vethaak AD, Van Muiswinkel WB (1994) Fish as biomarkers in immunotoxicology. Toxicology 86(3):213–232

    Article  CAS  Google Scholar 

  41. Scholz S, Mayer I (2008) Molecular biomarkers of endocrine disruption in small model fish. Mol Cell Endocrinol 293(1):57–70

    Article  CAS  Google Scholar 

  42. Spies RB, Stegeman JJ, Rice DW et al (1990) Sublethal responses of Platichthys stellatus to organic contamination in San Francisco Bay with emphasis on reproduction. In: McCarthy JF, Shugart LR (eds) Biomarkers of environmental contamination. Lewis, Chelsea, pp 87–122

    Google Scholar 

  43. Payne JF, Mathieu A, Melvin W et al (1996) Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar Pollut Bull 32(2):225–231

    Article  CAS  Google Scholar 

  44. Roos V, Gunnarsson L, Fick J et al (2012) Prioritising pharmaceuticals for environmental risk assessment: towards adequate and feasible first-tier selection. Sci Total Environ 421:102–110

    Article  CAS  Google Scholar 

  45. Küster A, Adler N (2014) Pharmaceuticals in the environment: scientific evidence of risks and its regulation. Philos Trans R Soc B 369(1656):20130587

    Article  CAS  Google Scholar 

  46. European Environment Agency (2010) Pharmaceuticals in the environment – results of an EEA workshop. EEA technical report no 1/2010. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  47. EMEA (2006) European medicines agency. Pre-authorisation evaluation of medicines for human use. Committee for Medicinal Products for Human Use (CHMP) (Doc. Ref. EMEA/CHMP/SWP/ 4447/00)

    Google Scholar 

  48. Dix DJ, Houck KA, Martin MT et al (2006) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95(1):5–12

    Article  CAS  Google Scholar 

  49. Snyder S, Vanderford B, Pearson R et al (2003) Analytical methods used to measure endocrine disrupting compounds in water. Pract Period Hazard Toxic Radioact Waste Manage 7(4):224–234

    Article  CAS  Google Scholar 

  50. McVey EA (2012) Regulation of pharmaceuticals in the environment: the USA. In: Brooks BW, Huggett DB (eds) Human pharmaceuticals in the environment. Springer, New York, pp 49–61

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nely SanJuan-Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

SanJuan-Reyes, N., Gómez-Oliván, L.M., Islas-Flores, H., Castro-Pastrana, L.I. (2017). Control of Environmental Pollution Caused by Pharmaceuticals. In: Gómez-Oliván, L. (eds) Ecopharmacovigilance. The Handbook of Environmental Chemistry, vol 66. Springer, Cham. https://doi.org/10.1007/698_2017_152

Download citation

Publish with us

Policies and ethics