Skip to main content

Impact of Pharmaceutical Waste on Biodiversity

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 66))

Abstract

The increase in levels of pharmacological substances in the environment and their potential adverse effects on biological systems are a problem of global relevance that will pose greater challenges to countries with high rates of population growth. There is evidence that the incorporation of pharmacological substances into organisms and ecosystems puts genetic diversity, species diversity, and community diversity at risk.

There are several pathways through which waste pharmaceuticals can reach to organisms; the main one is through sewage discharge into aquatic ecosystems affecting organism such as microorganisms, fishes, and invertebrates, which can be consumed by higher trophic levels and cause trophic cascade effects. Also the use of treated wastewater for agricultural irrigation can affect the plants which are at the base of the trophic chain. Most of the studies about the effect of pharmaceutical on organisms have omitted to test nonlethal effects, such as change in behavior, reproduction, and stress and changes in community composition and structure. The few studies that have addressed these effects have showed that these changes can affect organisms’ survival or reproductive success, which are linked to their biological fitness, and can affect population and community dynamics and precede species extinctions.

Due to the vulnerability of Mexican species and ecosystems to human pressures, it is necessary to begin evaluating and carrying out actions that minimize the risks to biodiversity of drug contamination. The areas in which this type of action would be necessary are those in which it finds a high biological diversity with a high percentage of endemic or endangered species, as well as in ecosystems where ecological processes are fundamental to the maintenance of biodiversity and environmental services at the regional level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(Suppl 6):907–938

    Article  CAS  Google Scholar 

  2. Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lützhøft HH, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36(2):357–393

    Article  Google Scholar 

  3. Hignite C, Azarnoff DL (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20(2):337–341

    Article  CAS  Google Scholar 

  4. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    Article  CAS  Google Scholar 

  5. Küster A, Adler N (2014) Pharmaceuticals in the environment: scientific evidence of risks and its regulation. Philos Trans R Soc B 369(1656):20130587

    Article  CAS  Google Scholar 

  6. Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Jarosova B (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47(17):6475–6487

    Article  CAS  Google Scholar 

  7. Kostich MS, Batt AL, Lazorchak JM (2014) Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ Pollut 184:354–359

    Article  CAS  Google Scholar 

  8. Wu C, Huang X, Witter JD, Spongberg AL, Wang K, Wang D, Liu J (2014) Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China. Ecotoxicol Environ Saf 106:19–26

    Article  CAS  Google Scholar 

  9. Quadra GR, de Souza HO, dos Santos Costa R, dos Santos Fernandez MA (2016) Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. Environ Sci Pollut Res 24(2):1–19

    Google Scholar 

  10. Dowden HM, Jahn R, Catka T, Jonsson A, Michael E, Miwa Y, Zinkand W (2013) Industry and regulatory performance in 2012: a year in review. Clin Pharmacol Ther 94(3):359–366

    Article  CAS  Google Scholar 

  11. Monteiro SC, Boxall AB (2010) Occurrence and fate of human pharmaceuticals in the environment. Reviews of environmental contamination and toxicology. Springer, New York, pp 53–154

    Chapter  Google Scholar 

  12. Arnold KE, Brown AR, Ankley GT, Sumpter JP (2014) Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystems. Philos Trans R Soc Lond B Biol Sci 369

    Google Scholar 

  13. Carter LJ, Harris E, Williams M, Ryan JJ, Kookana RS, Boxall AB (2014) Fate and uptake of pharmaceuticals in soil–plant systems. J Agric Food Chem 62(4):816–825

    Article  CAS  Google Scholar 

  14. Shore RF, Taggart MA, Smits J, Mateo R, Richards NL, Fryday S (2014) Detection and drivers of exposure and effects of pharmaceuticals in higher vertebrates. Philos Trans R Soc B 369(1656):20130570

    Article  Google Scholar 

  15. Lazarus RS, Rattner BA, Brooks BW, Du B, McGowan PC, Blazer VS, Ottinger MA (2015) Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): predictive model and empirical data. Integr Environ Assess Manag 11(1):118–129

    Article  CAS  Google Scholar 

  16. Cuthbert R, Taggart MA, Prakash V, Saini M, Swarup D, Upreti S, Green RE (2011) Effectiveness of action in India to reduce exposure of Gyps vultures to the toxic veterinary drug diclofenac. PLoS One 6(5):e19069

    Article  CAS  Google Scholar 

  17. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32(17):2498–2506

    Article  CAS  Google Scholar 

  18. Jobling S, Williams R, Johnson A, Taylor A, Gross-Sorokin M, Nolan M, Brighty G (2006) Predicted exposures to steroid estrogens in UK rivers correlate with widespread sexual disruption in wild fish populations. Environ Health Perspect 114(Suppl 1):32

    Article  Google Scholar 

  19. United Nations Department of Economic and Social Affairs and Population Division (2015) World population prospects: the 2015 revision, key findings and advance tables. Working paper No. ESA/P/WP 241

    Google Scholar 

  20. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4(4):355–364

    Article  Google Scholar 

  21. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Jeandel C (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269):aad2622

    Article  CAS  Google Scholar 

  22. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1(5):e1400253

    Article  Google Scholar 

  23. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2015) Estimating the normal background rate of species extinction. Conserv Biol 29(2):452–462

    Article  Google Scholar 

  24. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the Anthropocene. Science 345(6195):401–406

    Article  CAS  Google Scholar 

  25. Jenkins M (2003) Prospects for biodiversity. Science 302(5648):1175–1177

    Article  CAS  Google Scholar 

  26. WWF (2016) Living planet report (2016). Risk and resilience in a new era. WWF International, Gland

    Google Scholar 

  27. Oaks JL, Gilbert M, Virani MZ, Watson RT (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427(6975):630

    Article  CAS  Google Scholar 

  28. Corcoran J, Winter MJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40(4):287–304

    Article  CAS  Google Scholar 

  29. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci 104(21):8897–8901

    Article  CAS  Google Scholar 

  30. Kidd KA, Paterson MJ, Rennie MD, Podemski CL, Findlay DL, Blanchfield PJ, Liber K (2014) Direct and indirect responses of a freshwater food web to a potent synthetic oestrogen. Philos Trans R Soc B 369(1656):20130578

    Article  Google Scholar 

  31. Bean TG, Boxall AB, Lane J, Herborn KA, Pietravalle S, Arnold KE (2014) Behavioural and physiological responses of birds to environmentally relevant concentrations of an antidepressant. Philos Trans R Soc B 369(1656):20130575

    Article  CAS  Google Scholar 

  32. Markman S, Müller CT, Pascoe D, Dawson A, Buchanan KL (2011) Pollutants affect development in nestling starlings Sturnus vulgaris. J Appl Ecol 48(2):391–397

    Article  Google Scholar 

  33. Brodin T, Piovano S, Fick J, Klaminder J, Heynen M, Jonsson M (2014) Ecological effects of pharmaceuticals in aquatic systems – impacts through behavioural alterations. Philos Trans R Soc B 369(1656):20130580

    Article  CAS  Google Scholar 

  34. Bringolf RB, Heltsley RM, Newton TJ, Eads CB, Fraley SJ, Shea D, Cope WG (2010) Environmental occurrence and reproductive effects of the pharmaceutical fluoxetine in native freshwater mussels. Environ Toxicol Chem 29(6):1311–1318

    CAS  Google Scholar 

  35. Gunnarsson L, Jauhiainen A, Kristiansson E, Nerman O, Larsson DJ (2008) Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol 42(15):5807–5813

    Article  CAS  Google Scholar 

  36. Brown AR, Gunnarsson L, Kristiansson E, Tyler CR (2014) Assessing variation in the potential susceptibility of fish to pharmaceuticals, considering evolutionary differences in their physiology and ecology. Philos Trans R Soc B 369(1656):20130576

    Article  Google Scholar 

  37. Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142(6):911–927

    Article  Google Scholar 

  38. Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31(2):131–134

    Article  Google Scholar 

  39. Llorente-Bousquets J, Ocegueda S (2008) Estado del conocimiento de la biota, vol 1. Conabio, Mexico City, pp 283–322

    Google Scholar 

  40. Baena ML, Halffter G (2008) Extinción de especies. Conabio, Mexico City, pp 263–282

    Google Scholar 

  41. IUCN (2017) The IUCN red list of threatened species. Version 2017-2. http://www.iucnredlist.org. Accessed 14 Sept 2017

  42. Sarukhán J, Koleff P, Carabias J, Soberón J, Dirzo R, Llorente-Bousquets J et al (2009) Capital natural de México: conocimiento actual, evaluación y perspectivas de sustentabilidad. Síntesis. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City

    Google Scholar 

  43. Denisse S (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010: Protección ambiental-especies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo

    Google Scholar 

  44. Ceballos G (1993) Especies en peligro de extinción. Ciencias 7:5–10

    Google Scholar 

  45. Espinosa-Pérez H (2014) Biodiversidad de peces en México. Revista mexicana de biodiversidad 85:450–459

    Article  Google Scholar 

  46. Torres A, Esquivel C, Ceballos G (1995) Diversidad y conservación de los mamíferos marinos de México. Revista Mexicana de Mastozoología 1:22–43

    Google Scholar 

  47. Rojas-Bracho L, Reeves RR, Jaramillo-Legorreta A (2006) Conservation of the vaquita Phocoena sinus. Mammal Rev 36(3):179–216

    Article  Google Scholar 

  48. Galindo-Reyes JG, Fossato VU, Villagrana-Lizarraga C, Dolci F (1999) Pesticides in water, sediments, and shrimp from a coastal lagoon off the Gulf of California. Mar Pollut Bull 38(9):837–841

    Article  CAS  Google Scholar 

  49. CONABIO (2014) Quinto Informe Nacional de México ante el Convenio sobre la Diversidad Biológica. Conabio, Mexico City

    Google Scholar 

  50. Lara-Lara JR et al (2008) Los ecosistemas costeros, insulares y epicontinentales. Conabio, Mexico City, pp 109–134

    Google Scholar 

  51. Flores-Verdugo F, González-Farias F, Zaragoza-Araujo U (1993) Ecological parameters of the mangroves of semi-arid regions of Mexico: important for ecosystem management. Towards the rational use of high salinity tolerant plants. Springer, Dordrecht, pp 123–132

    Chapter  Google Scholar 

  52. Yáñez-Arancibia A, Twilley RR, Lara Domínguez AL (1998) Los ecosistemas de manglar frente al cambio climático global. Madera y Bosques 4(2)

    Article  Google Scholar 

  53. Bartrons M, Peñuelas J (2017) Pharmaceuticals and personal-care products in plants. Trends Plant Sci 22:194–203

    Article  CAS  Google Scholar 

  54. Begon M, Townsen CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, Hoboken, p 55

    Google Scholar 

  55. Riaz L, Mahmood T, Coyne MS et al (2017) Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere 177:250–257

    Article  CAS  Google Scholar 

  56. Taiz L, Zaiger E, Moller IM et al (2014) Plant physiology and development. Sinauer Associates, Sunderland

    Google Scholar 

  57. Alexandrino DAM, Mucha AP, Almeida CMR et al (2017) Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. Sci Total Environ 581–582:359–368

    Article  CAS  Google Scholar 

  58. Lawrence JR, Zhu B, Swerhone GDW et al (2012) Molecular and microscopic assessment of the effects of caffeine, acetaminophen, diclofenac, and their mixtures on river biofilm communities. Environ Toxicol Chem 31:508–517

    Article  CAS  Google Scholar 

  59. Jarvis AL, Bernot MJ, Bernot RJ (2014) Relationships between the psychiatric drug carbamazepine and freshwater macroinvertebrate community structure. Sci Total Environ 496:499–509

    Article  CAS  Google Scholar 

  60. Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907

    Article  CAS  Google Scholar 

  61. Neal AE, Moorea PA (2017) Mimicking natural systems: changes in behavior as a result of dynamic exposure to naproxen. Ecotoxicol Environ Saf 135:347–357

    Article  CAS  Google Scholar 

  62. Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M et al (2016) Cyto-genotoxicity and oxidative stress in common carp (Cyprinus carpio) exposed to a mixture of ibuprofen and diclofenac. Environ Toxicol 32:1637–1650

    Article  CAS  Google Scholar 

  63. Cuthbert RJ, Taggart MA, Prakash V et al (2014) Avian scavengers and the threat from veterinary pharmaceuticals. Philos Trans R Soc B 369:20130574. https://doi.org/10.1098/rstb.2013.0574

    Article  Google Scholar 

  64. SAGARPA (2017) Crece de manera exponencial la acuacultura en México y es referente en América Latina. Comunicado de prensa 31 de marzo de 2017. http://www.sagarpa.gob.mx/Delegaciones/distritofederal/boletines/2017/marzo/Documents/JAC_00113_31.PDF. Accessed 4 Sept 2017

  65. INEGI (2017) Censo Nacional de Gobiernos Municipales y Delegacionales 2015. Datos Abiertos: Agua Potable y Saneamiento. http://www.beta.inegi.org.mx/proyectos/censosgobierno/municipal/cngmd/2015/. Accessed 20 Aug 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuautle Mariana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Néstor, M.C., Mariana, C. (2017). Impact of Pharmaceutical Waste on Biodiversity. In: Gómez-Oliván, L. (eds) Ecopharmacovigilance. The Handbook of Environmental Chemistry, vol 66. Springer, Cham. https://doi.org/10.1007/698_2017_151

Download citation

Publish with us

Policies and ethics