Skip to main content

Role of Membrane on Emerging Contaminant Removal

  • Chapter
  • First Online:
Ecopharmacovigilance

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 66))

Abstract

The rejection of emerging contaminates, which are associated with potential adverse human-health effects, such as endocrine-disrupting compounds, emerging disinfection by-products, pharmaceutical residues, personal care products, and organic compounds, have increase the interest for membranes applications.

Previous reports using a membrane as a filter have contributed to an improved understanding of rejection mechanisms for emerging contaminates; for example, microfiltration, ultrafiltration, nanofiltration, and reverse osmosis have been investigated.

In this chapter, they are going to find an information about the role of membrane on emerging contaminant removal and, likewise, characteristics of emerging contaminants, membrane classification, sources and levels of drugs in wastewater, and removal of emerging contaminants using membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrovic M, de Alda MJL, Diaz-Cruz S, Postigo C, Radjenovic J, Gros M et al (2009) Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration. Philos Trans R Soc A 367(1904):3979–4003

    Article  CAS  Google Scholar 

  2. Drewes JE, Bellona C, Oedekoven M, Xu P, Kim TU, Amy G (2005) Rejection of wastewater-derived micropollutants in high-pressure membrane applications leading to indirect potable reuse. Environ Prog 24(4):400–409

    Article  CAS  Google Scholar 

  3. Petrović M, Gonzalez S, Barceló D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal Chem 22(10):685–696

    Article  CAS  Google Scholar 

  4. Acero JL, Benitez FJ, Teva F, Leal AI (2010) Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chem Eng J 163(3):264–272. https://doi.org/10.1016/j.cej.2010.07.060

    Article  CAS  Google Scholar 

  5. Halling-Sorensen B, Halling-Sorensen B, Nielsen SN, Nielsen SN, Lanzky PF, Lanzky PF et al (1998) Occurrence, fate and effects of pharmaceuticals substance in the environment – a review. Chemosphere 36(2):357–393

    Article  CAS  Google Scholar 

  6. Garric J, Ferrari B (2005) Les substances pharmaceutiques dans les milieux aquatiques. Niveaux d’exposition et effet biologique : que savons nous? Rev des Sci l’eau 18(3):307. http://id.erudit.org/iderudit/705561ar

    Article  CAS  Google Scholar 

  7. Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303. https://doi.org/10.1016/j.envpol.2011.12.034

    Article  CAS  Google Scholar 

  8. Kaushik N (2008) Membrane separation Process. Prentice Hall, New Delhi

    Google Scholar 

  9. Seman MNA, Khayet M, Hilal N (2010) Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. J Membr Sci 348(1–2):109–116

    Article  CAS  Google Scholar 

  10. Xu P, Drewes JE, Bellona C, Amy G, Kim T-U, Adam M et al (2005) Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environ Res 77(1):40–48. http://www.jstor.org/stable/25045836

    Article  CAS  Google Scholar 

  11. Diagne F, Malaisamy R, Boddie V, Holbrook RD, Eribo B, Jones KL (2012) Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling. Environ Sci Technol 46(7):4025–4033

    Article  CAS  Google Scholar 

  12. Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42(14):3601–3610

    Article  CAS  Google Scholar 

  13. Robinson M, Kinna A, Scholfield D, Melinek B (2005) Minnesota Rural Water Association, 30/09/2017. [Online]. Available: www.mrwa.com/WaterWorksMnl/Chapter 19 Membrane Filtration

    Google Scholar 

  14. Acero JL, Javier Benitez F, Real FJ, Teva F (2012) Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Chem Eng J 210:1–8. https://doi.org/10.1016/j.cej.2012.08.043

    Article  CAS  Google Scholar 

  15. Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254. https://doi.org/10.1016/j.desal.2014.10.043

    Article  CAS  Google Scholar 

  16. Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 270(1–2):88–100

    Article  CAS  Google Scholar 

  17. Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 238(1–3):229–246. https://doi.org/10.1016/j.desal.2008.03.020

    Article  CAS  Google Scholar 

  18. Verlicchi P, Galletti A, Petrovic M, BarcelÓ D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389(3–4):416–428. https://doi.org/10.1016/j.jhydrol.2010.06.005

    Article  CAS  Google Scholar 

  19. Pauwels B, Fru Ngwa F, Deconinck S, Verstraete W (2006) Effluent quality of a conventional activated sludge and a membrane bioreactor system treating hospital wastewater. Environ Technol 27(4):395–402

    Article  CAS  Google Scholar 

  20. Tam LS, Tang TW, Lau GN, Sharma KR, Chen GH (2007) A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination 202(1–3):106–113

    Article  CAS  Google Scholar 

  21. Dialynas E, Diamadopoulos E (2009) Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 238(1–3):302–311

    Article  CAS  Google Scholar 

  22. Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J, Rodriguez-Roda I et al (2012) Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J Hazard Mater 239–240:64–69. https://doi.org/10.1016/j.jhazmat.2012.03.029

    Article  CAS  Google Scholar 

  23. Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD et al (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States – (I) groundwater. Sci Total Environ 402(2–3):201–216

    Article  CAS  Google Scholar 

  24. Terzić S, Senta I, Ahel M, Gros M, Petrović M, Barcelo D et al (2008) Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Sci Total Environ 399(1–3):66–77

    Article  CAS  Google Scholar 

  25. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157(2):561–568

    Article  CAS  Google Scholar 

  26. Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I et al (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926

    Article  CAS  Google Scholar 

  27. Moon HB, Yoon SP, Jung RH, Choi M (2008) Wastewater treatment plants (WWTPs) as a source of sediment contamination by toxic organic pollutants and fecal sterols in a semi-enclosed bay in Korea. Chemosphere 73(6):880–889

    Article  CAS  Google Scholar 

  28. Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S (2010) Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1217(44):6791–6806. https://doi.org/10.1016/j.chroma.2010.08.033

    Article  CAS  Google Scholar 

  29. Arnot TC, Zahir N (1996) Membrane bioreactors as an alternative to conventional waste water treatment processes. Resour Environ Biotechnol 1(2):145–162

    CAS  Google Scholar 

  30. Chiemchaisri C, Yamamoto K (1994) Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment. J Membr Sci 87(1–2):119–129

    Article  CAS  Google Scholar 

  31. Rosenberger S, Kraume M (2003) Filterability of activated sludge in membrane bioreactors. Desalination 151(2):195–200

    Article  CAS  Google Scholar 

  32. Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39(12):2654–2664

    Article  CAS  Google Scholar 

  33. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T et al (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152

    Article  CAS  Google Scholar 

  34. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39(19):4797–4807

    Article  CAS  Google Scholar 

  35. Kimura K, Amy G, Drewes J, Watanabe Y (2003) Adsorption of hydrophobic compounds onto NF/RO membranes: an artifact leading to overestimation of rejection. J Membr Sci 221(1–2):89–101

    Article  CAS  Google Scholar 

  36. Kimura K, Amy G, Drewes JE, Heberer T, Kim TU, Watanabe Y (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Membr Sci 227(1–2):113–121

    Article  CAS  Google Scholar 

  37. Kimura K, Toshima S, Amy G, Watanabe Y (2004) Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J Membr Sci 245(1–2):71–78

    Article  CAS  Google Scholar 

  38. Nghiem LD, Manis A, Soldenhoff K, Schäfer AI (2004) Estrogenic hormone removal from wastewater using NF/RO membranes. J Membr Sci 242(1–2):37–45

    Article  CAS  Google Scholar 

  39. Stephenson T, Judd S, Jefferson B, Brindle K (2006) Membrane bioreactors for wastewater treatment. IWA Publishing, London, p 175

    Google Scholar 

  40. Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005) The solids retention time – a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39(1):97–106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa María Gómez-Espinosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gómez-Espinosa, R.M., Arizmendi-Cotero, D. (2017). Role of Membrane on Emerging Contaminant Removal. In: Gómez-Oliván, L. (eds) Ecopharmacovigilance. The Handbook of Environmental Chemistry, vol 66. Springer, Cham. https://doi.org/10.1007/698_2017_149

Download citation

Publish with us

Policies and ethics