Skip to main content

Separation and Characterization of NOM Intermediates Along AOP Oxidation

  • Chapter
  • First Online:
Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment

Abstract

Removal of natural organic matter (NOM) in drinking water treatment systems has been a matter of thorough study in recent years. NOM affects organoleptic properties of water and causes membrane fouling; it may act as energy source for microorganisms in distribution systems and leads to the formation of undesired disinfection by-products through its interaction with chlorine. Currently the role played by advanced oxidation processes in the removal of NOM has gained great interest; understanding the composition and behaviour of NOM throughout such a kind of processes may allow to get significant insight in order to improve efficiency. In this chapter the main techniques useful for characterization are described, and their use to investigate the changes undergone by NOM throughout several AOPs has been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMW:

Apparent molecular weight distribution

AOPs:

Advanced oxidation processes

BA:

Benzoic acid

CAS:

Conventional activated sludge

C-DBPs:

Carbonaceous disinfection by-products

CDOM:

Coloured dissolved organic matter

COD:

Chemical oxygen demand

DOC:

Dissolved organic carbon (mg C/L)

DOM:

Dissolved organic matter

DPBs:

Disinfection by-products

ESI-FT-ICR-MS:

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

FA:

Fulvic acids

FEEM:

Fluorescence excitation/emission matrix

FFA:

Furfuryl alcohol

FT-IR:

Fourier transform infrared spectroscopy

GC-MS:

Gas chromatography-mass spectrometry

HA:

Humic acids

HAAs:

Haloacetic acids

HMW:

High molecular weight

HPI:

Hydrophilic fraction

HPI-A:

Hydrophilic acids

HPI-B:

Hydrophilic bases

HPI-N:

Hydrophilic neutrals

HPO:

Hydrophobic fraction

HPO-A:

Hydrophobic acids

HPO-B:

Hydrophobic bases

HPO-N:

Hydrophobic neutrals

HS:

Humic substances

LC-OCD:

Liquid chromatography-organic carbon detection

LC-SEC:

Size-exclusion liquid chromatography

LC-UVD:

Liquid chromatography-ultraviolet detection

LMW:

Low molecular weight

MBR:

Membrane biological reactor

Mt:

Montmorillonite

MTBE:

Methyl tert-butyl ether

MW:

Molecular weight

N-DBPs:

Nitrogenous disinfection by-products

NMR:

Nuclear magnetic resonance spectroscopy

NOM:

Natural organic matter

NPOC:

Non-purgeable organic carbon

OCD:

Organic carbon detector

PCU:

Platinum-cobalt units

PFBHA:

Pentafluorobenzyl hydroxylamine hydrochloride

PS:

Persulphate

PSS:

Polystyrene sulphonate

RCSs:

Reactive chlorine species

RID:

Refractive index detector

ROS:

Reactive oxygen species

RP:

Reversed-phase liquid chromatography

RT:

Room temperature

SEC:

Size-exclusion chromatography

SHA:

Slightly hydrophobic acid fraction

SUVA:

Specific UV absorbance (L/mg m)

THMs:

Trihalomethanes

TOC:

Total organic carbon (mg C/L)

TPI:

Transphilic fraction

US:

Ultrasound

UV:

Ultraviolet

UV254 :

UV absorbance at 254 nm (m−1)

UVD:

Ultraviolet detector

UV-Vis:

Ultraviolet visible

VHA:

Very hydrophobic acid fraction

References

  1. Camargo Valero M, Cruz Torres LE (1999) Sustancias húmicas en aguas para abastecimiento. Ing Invest 44:63–72

    Google Scholar 

  2. Chiou CT, Malcolm RL, Brinton TI, Kile DE (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol 20(5):502–508

    Article  CAS  Google Scholar 

  3. Leenheer JA, Croué J–P (2003) Aquatic organic matter: understanding the unknown structures is key to better treatment of drinking water. Environ Sci Technol 37(1):18A–26A

    Article  CAS  Google Scholar 

  4. CBCL Limited, Newfoundland and Labrador, Department of Environment and Conservation, Water Management Division (2011) Study on characteristics and removal of natural organic matter in drinking water systems in newfoundland and labrador – final report. Department of Environment and Conservation, Water Management Division, St. John’s

    Google Scholar 

  5. Frimmel FH, Abbt-Braun G, Heumann KG, Hock B, Lüdemann H-D, Spiteller M (2002) Refractory organic substances in the environment. Wiley–VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  6. Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpaa M (2011) An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83(11):1431–1442

    Article  CAS  Google Scholar 

  7. Lavonen E (2015) Tracking changes in dissolved natural organic matter composition. PhD thesis, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  8. Navalón S (2010) Parámetros de calidad del agua relacionados con la presencia de materia orgánica y microorganismos. PhD thesis, Universidad Politécnica de Valencia, Valencia

    Google Scholar 

  9. Matilainen A, Vepsalainen M, Sillanpaa M (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interf Sci 159(2):189–197

    Article  CAS  Google Scholar 

  10. Cui X, Choo K-H (2014) Natural organic matter removal and fouling control in low–pressure membrane filtration for water treatment. Environ Eng Res 19(1):1–8

    Article  Google Scholar 

  11. Leenheer JA (1981) Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ Sci Technol 15(5):578–587

    Article  CAS  Google Scholar 

  12. Cehovin M, Medic A, Scheideler J, Mielcke J, Ried A, Kompare B, Zgajnar Gotvajn A (2017) Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV–based advanced oxidation processes for the removal of natural organic matter from drinking water. Ultrason Sonochem 37:394–404

    Article  CAS  Google Scholar 

  13. Galeano LA, Bravo PF, Luna CD, Vicente MÁ, Gil A (2012) Removal of natural organic matter for drinking water production by Al/Fe–PILC–catalyzed wet peroxide oxidation: effect of the catalyst preparation from concentrated precursors. Appl Catal B 111–112:527–535

    Article  CAS  Google Scholar 

  14. Matilainen A, Sillanpaa M (2010) Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80(4):351–365

    Article  CAS  Google Scholar 

  15. Xing L, Murshed MF, Lo T, Fabris R, Chow CWK, van Leeuwen J, Drikas M, Wang D (2012) Characterization of organic matter in alum treated drinking water using high performance liquid chromatography and resin fractionation. Chem Eng J 192:186–191

    Article  CAS  Google Scholar 

  16. Wang H, Zhu Y, Hu C (2017) Impacts of bacteria and corrosion on removal of natural organic matter and disinfection byproducts in different drinking water distribution systems. Int Biodeterior Biodegrad 117:52–59

    Article  CAS  Google Scholar 

  17. Trueman BF, MacIsaac SA, Stoddart AK, Gagnon GA (2016) Prediction of disinfection by–product formation in drinking water via fluorescence spectroscopy. Environ Sci Water Res Technol 2(2):383–389

    Article  CAS  Google Scholar 

  18. Giannino M (2014) Drinking water and water management: new research. Nova Science Publishers, New York

    Google Scholar 

  19. Fan X, Tao Y, Wang L, Zhang X, Lei Y, Wang Z, Noguchi H (2014) Performance of an integrated process combining ozonation with ceramic membrane ultra–filtration for advanced treatment of drinking water. Desalination 335(1):47–54

    Article  CAS  Google Scholar 

  20. Abdul Hamid KI, Sanciolo P, Gray S, Duke M, Muthukumaran S (2017) Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling. Water Res 126:308–318. https://doi.org/10.1016/j.watres.2017.09.012

    Article  CAS  Google Scholar 

  21. Papageorgiou A, Voutsa D, Papadakis N (2014) Occurrence and fate of ozonation by–products at a full–scale drinking water treatment plant. Sci Total Environ 481:392–400

    Article  CAS  Google Scholar 

  22. Linden KG, Mohseni M (2014) Advanced oxidation processes: applications in drinking water treatment. In: Ahuja S (ed) Comprehensive water quality and purification. Elsevier, Amsterdam

    Google Scholar 

  23. Kommineni S, Zoeckler J, Stocking A, Liang S, Flores A, Kavanaugh M, Rodriguez R, Browne T, Roberts R, Brown A, Stocking A (2008) 3.0 advanced oxidation processes. National Water Research Institute, Fountain Valley

    Google Scholar 

  24. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Env Sci Technol 36(1):1–84

    Article  CAS  Google Scholar 

  25. Li Y, Fang Z, He C, Zhang Y, Xu C, Chung KH, Shi Q (2015) Molecular characterization and transformation of dissolved organic matter in refinery wastewater from water treatment processes: characterization by fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel 29(11):6956–6963

    Article  CAS  Google Scholar 

  26. Świetlik JS, Sikorska E (2005) Characterization of natural organic matter fractions by high pressure size–exclusion chromatography, specific UV absorbance and total luminescence spectroscopy. Pol J Environ Stud 15(1):145–153

    Google Scholar 

  27. Hu HY, Du Y, Wu QY, Zhao X, Tang X, Chen Z (2016) Differences in dissolved organic matter between reclaimed water source and drinking water source. Sci Total Environ 551–552:133–142

    Article  CAS  Google Scholar 

  28. Fabris R, Chow C, Tran T, Gray S, Drikas M (2008) Development of combined treatment processes for the removal of recalcitrant organic matter. CMSE Internal Technical Report 2008–316, CSIRO, Canberra

    Google Scholar 

  29. Pavlik JW, Perdue EM (2015) Number–average molecular weights of natural organic matter, hydrophobic acids, and transphilic acids from the suwannee river, georgia, as determined using vapor pressure osmometry. Environ Eng Sci 32(1):23–30

    Article  CAS  Google Scholar 

  30. Pan Y, Li H, Zhang X, Li A (2016) Characterization of natural organic matter in drinking water: sample preparation and analytical approaches. Trends Environ Anal Chem 12:23–30

    Article  CAS  Google Scholar 

  31. Rodríguez FJ, Núñez LA (2011) Characterization of aquatic humic substances. Water Environ J 25(2):163–170

    Article  Google Scholar 

  32. Stylianou SK, Katsoyiannis IA, Ernst M, Zouboulis AI (2017) Impact of O3 or O3/H2O2 treatment via a membrane contacting system on the composition and characteristics of the natural organic matter of surface waters. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356–017–9554–8

  33. Moncayo-Lasso A, Rincon A-G, Pulgarin C, Benitez N (2012) Significant decrease of THMs generated during chlorination of river water by previous photo–Fenton treatment at near neutral pH. J Photochem Photobiol A 229(1):46–52

    Article  CAS  Google Scholar 

  34. Uyguner CS, Bekbolet M (2005) Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination 176(1–3):47–55

    Article  CAS  Google Scholar 

  35. Naddeo V, Belgiorno V, Napoli RMA (2007) Behaviour of natural organic matter during ultrasonic irradiation. Desalination 210(1–3):175–182

    Article  CAS  Google Scholar 

  36. Kujawinski EB, Del Vecchio R, Blough NV, Klein GC, Marshall AG (2004) Probing molecular–level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 92(1–4):23–37

    Article  CAS  Google Scholar 

  37. Galeano LA, Vicente MA, Gil A (2014) Catalytic degradation of organic pollutants in aqueous streams by mixed Al/M–pillared clays (M = Fe, Cu, Mn). Catal Rev 56(3):239–287

    Article  CAS  Google Scholar 

  38. Tsydenova O, Batoev V, Batoeva A (2015) Solar–enhanced advanced oxidation processes for water treatment: simultaneous removal of pathogens and chemical pollutants. Int J Environ Res Public Health 12(8):9542–9561

    Article  CAS  Google Scholar 

  39. Von Sonntag CS, Schuchmann HP (1991) The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation–chemical methods. Angew Chem Int Ed Engl 30(10):1229–1253

    Article  Google Scholar 

  40. Von Sonntag C, Schuchmann HP (1997) Peroxyl radicals in aqueous solutions. Peroxyl radicals. Wiley, New York

    Google Scholar 

  41. Von Sonntag C (2008) Advanced oxidation processes: mechanistic aspects. Water Sci Technol 58(5):1015–1021

    Article  CAS  Google Scholar 

  42. Xie P, Ma J, Liu W, Zou J, Yue S (2015) Impact of UV/persulfate pretreatment on the formation of disinfection byproducts during subsequent chlorination of natural organic matter. Chem Eng J 269:203–211

    Article  CAS  Google Scholar 

  43. Rubio-Clemente A, Torres-Palma RA, Peñuela GA (2014) Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci Total Environ 478:201–225

    Article  CAS  Google Scholar 

  44. Lamsal R, Walsh ME, Gagnon GA (2011) Comparison of advanced oxidation processes for the removal of natural organic matter. Water Res 45(10):3263–3269

    Article  CAS  Google Scholar 

  45. Tubić A, Agbaba J, Dalmacija B, Perović SU, Klašnja M, Rončević S, Ivančev-Tumbas I (2011) Removal of natural organic matter from groundwater using advanced oxidation processes at a pilot scale drinking water treatment plant in the central banat region (Serbia). Ozone Sci Eng 33(4):267–278

    Article  CAS  Google Scholar 

  46. Zhong X, Cui C, Yu S (2017) Exploring the pathways of aromatic carboxylic acids in ozone solutions. RSC Adv 7(55):34339–34347

    Article  CAS  Google Scholar 

  47. Pisarenko AN, Stanford BD, Snyder SA, Rivera SB, Boal AK (2013) Investigation of the use of chlorine based advanced oxidation in surface water: oxidation of natural organic matter and formation of disinfection byproducts. J Adv Oxid Technol 16(1):137–150

    CAS  Google Scholar 

  48. Wang GS, Liao CH, Chen HW, Yang HC (2006) Characteristics of natural organic matter degradation in water by UV/H2O2 treatment. Environ Technol 27(3):277–287

    Article  CAS  Google Scholar 

  49. González O, Justo A, Bacardit J, Ferrero E, Malfeito JJ, Sans C (2013) Characterization and fate of effluent organic matter treated with UV/H2O2 and ozonation. Chem Eng J 226:402–408

    Article  CAS  Google Scholar 

  50. Wang WL, Zhang X, Wu QY, Du Y, Hu HY (2017) Degradation of natural organic matter by UV/chlorine oxidation: molecular decomposition, formation of oxidation byproducts and cytotoxicity. Water Res 124:251–258

    Article  CAS  Google Scholar 

  51. Fang JY, Fu Y, Shang C (2014) The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ Sci Technol 48(3):1859–1868

    Article  CAS  Google Scholar 

  52. Giannakis S, Gamarra Vives FA, Grandjean D, Magnet A, De Alencastro LF, Pulgarin C (2015) Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods. Water Res 84:295–306

    Article  CAS  Google Scholar 

  53. Porras J, Bedoya C, Silva-Agredo J, Santamaria A, Fernandez JJ, Torres-Palma RA (2016) Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Res 94:1–9

    Article  CAS  Google Scholar 

  54. Blough NV, Zepp RG (1995) Active oxygen in chemistry. In: Foote CS, Valentine JS, Greenberg A, Liebman JF (eds) Structure energetics and reactivity in chemistry series1st edn. Chapman & Hall, London, pp 280–333

    Google Scholar 

  55. Birben NC, Uyguner-Demirel CS, Kavurmaci SS, Gürkan YY, Turkten N, Cinar Z, Bekbolet M (2017) Application of Fe–doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catal Today 281:78–84

    Article  CAS  Google Scholar 

  56. Li Y, Pan Y, Lian L, Yan S, Song W, Yang X (2017) Photosensitized degradation of acetaminophen in natural organic matter solutions: the role of triplet states and oxygen. Water Res 109:266–273

    Article  CAS  Google Scholar 

  57. Murray CA, Parsons SA (2004) Removal of NOM from drinking water: Fenton’s and photo–Fenton’s processes. Chemosphere 54(7):1017–1023

    Article  CAS  Google Scholar 

  58. Molnar J, Agbaba J, Watson M, Tubić A, Kragulj M, Maletić S, Dalmacija B (2015) Groundwater treatment using the Fenton process: changes in natural organic matter characteristics and arsenic removal. Int J Environ Res 9(2):467–474

    CAS  Google Scholar 

  59. Giannakis S, Polo Lopez MI, Spuhler D, Sanchez Perez JA, Fernandez Ibanez P, Pulgarin C (2016) Solar disinfection is an augmentable, in situ–generated photo–Fenton reaction part 2: a review of the applications for drinking water and wastewater disinfection. Appl Catal B 198:431–446

    Article  CAS  Google Scholar 

  60. Moncayo-Lasso A, Sanabria J, Pulgarin C, Benitez N (2009) Simultaneous E. coli inactivation and NOM degradation in river water via photo–Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water. Chemosphere 77(2):296–300

    Article  CAS  Google Scholar 

  61. Greathouse J, Johnson K, Greenwell H (2014) Interaction of natural organic matter with layered minerals: recent developments in computational methods at the nanoscale. Minerals 4(2):519–540

    Article  CAS  Google Scholar 

  62. Liu S, May L, Fabris R, Chow C, Drikas M, Amal R (2008) TiO2 photocatalysis of natural organic matter in surface water: impact on trihalomethane and haloacetic acid formation potential. Environ Sci Technol 42:6218–6223

    Article  CAS  Google Scholar 

  63. Brame J, Long M, Li Q, Alvarez P (2015) Inhibitory effect of natural organic matter or other background constituents on photocatalytic advanced oxidation processes: mechanistic model development and validation. Water Res 84:362–371

    Article  CAS  Google Scholar 

  64. Sen Kavurmaci S, Bekbolet M (2013) Photocatalytic degradation of humic acid in the presence of montmorillonite. Appl Clay Sci 75–76:60–66

    Article  CAS  Google Scholar 

  65. Chen D, Ziqi H, Weavers LK, Chin Y-P, Walker HW, Hatcher PG (2004) Sonochemical reactions of dissolved organic matter. Res Chem Intermed 30(7–8):735–753

    Article  CAS  Google Scholar 

  66. Olson TM, Barbier PF (1994) Oxidation kinetics of natural organic matter by sonolysis and ozone. Water Res 28(6):1383–1391

    Article  CAS  Google Scholar 

  67. Pourzamani H, Majd AMS, Attar HM, Bina B (2015) Natural organic matter degradation using combined process of ultrasonic and hydrogen peroxide treatment. Anu Inst Geocienc 38(1):63–72

    Google Scholar 

  68. Serna-Galvis EA, Silva-Agredo J, Giraldo-Aguirre AL, Flórez-Acosta OA, Torres-Palma RA (2016) High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrason Sonochem 31:276–283

    Article  CAS  Google Scholar 

  69. Guzman-Duque FL, Pétrier C, Pulgarin C, Peñuela G, Herrera-Calderón E, Torres-Palma RA (2016) Synergistic coupling between electrochemical and ultrasound treatments for organic pollutant degradation as a function of the electrode material (IrO2 and BDD) and the ultrasonic frequency (20 and 800 kHz). Int J Electrochem Sci 11(9):7380–7394

    Article  CAS  Google Scholar 

  70. Al-Juboori RA, Yusaf T, Aravinthan V, Bowtell L (2016) Investigating natural organic carbon removal and structural alteration induced by pulsed ultrasound. Sci Total Environ 541:1019–1030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from CWPO Project for Enhanced Drinking Water in Nariño (BPIN 2014000100020), CT&I Fund of SGR, Colombia, is kindly acknowledged. MAV and AG thank the support from the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (FEDER) (projects MAT2013-47811-C2-R and MAT2016-78863-C2-R). AMG also gratefully thanks PhD scholarship granted by Nariño Department (BPIN 2013000100092) and Managed by CEIBA Foundation, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Torres-Palma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García, AM., Torres-Palma, R.A., Galeano, L.A., Vicente, M.Á., Gil, A. (2017). Separation and Characterization of NOM Intermediates Along AOP Oxidation. In: Gil, A., Galeano, L., Vicente, M. (eds) Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. The Handbook of Environmental Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/698_2017_128

Download citation

Publish with us

Policies and ethics