Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 50))

  • 810 Accesses

Abstract

The recent 10 years are characterized by a marked success in our knowledge of the marine trace metal biogeochemistry, resulted from the International GEOTRACES Program (http://www.geotraces.org) ocean basin transects, including the areas of the mid-ocean ridges. Meanwhile, it is the authors’ opinion that now it’s time to summarize available data on trace metal biogeochemistry in the deep ocean hydrothermal vent ecosystems. In this book we aimed to outline some features that control processes of metal input from the deep-sea hydrothermal vents followed by their transport, dispersion in the ambient seawater, and biological accumulation. An important contribution in the biogeochemical research is associated with knowledge of the biological structure of bottom fauna inhabiting vent areas, as well as with deep biosphere of the subseafloor igneous crust. Some outlooks for the future research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sander SG, Koschinsky A (2016) The export of iron and other trace metals from hydrothermalvents and the impact on their marine biogeochemical cycle. Hdb Env Chem. doi:10.1007/698_2016_4

    Google Scholar 

  2. Hawkes JA, Connelly DP, Gledhill M, Achterberg EP (2013) The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems. Earth Planet Sci Lett 375:280–290

    Article  CAS  Google Scholar 

  3. Tagliabue A, Bopp L, Dutay JC, Bowie AR, Chever F, Jean-Babtiste P, Bucciarelli E, Lannuzel D, Remenyi T, Sarthou G, Aumont O, Gehlen M, Jeandel C (2010) Hydrothermal contribution to the oceanic dissolved iron inventory. Nat Geosci 3:252–256. doi:10.1038/NGEO818

    Article  CAS  Google Scholar 

  4. Wu JF, Roshan S, Chen G (2014) The distribution of dissolved manganese in the tropical-subtropical North Atlantic during US GEOTRACES 2010 and 2011 cruises. Mar Chem 166:9–24. doi:10.1016/j.marchem.2014.08.007

    Article  CAS  Google Scholar 

  5. Bennett SA, Achterberg EP, Connelly DP, Statharn PJ, Fones GR, German CR (2008) The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth Planet Sci Lett 270(3-4):157–167. doi:10.1016/j.epsl.2008.01.048

    Article  CAS  Google Scholar 

  6. Yucel M, Gartman A, Chan CS, Luther GW (2011) Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nat Geosci 4(6):367–371. http://www.nature.com/ngeo/journal/v4/n6/abs/ngeo1148.html#supplementary-information

    Google Scholar 

  7. Nishioka J, Obata H, Tsumune D (2013) Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean. Earth Planet Sci Lett 361:26–33. doi:10.1016/j.epsl.2012.11.040

    Article  CAS  Google Scholar 

  8. Schlitzer R (2004) Ocean data view. http://odv.awi-bremerhaven.de,

  9. Fitzsimmons JN, Boyle EA, Jenkins WJ (2014) Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. Proc Natl Acad Sci 111(47):16654–16661. doi:10.1073/pnas.1418778111

    Article  CAS  Google Scholar 

  10. Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW, Sohst BM, Tagliabue A (2015) Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523(7559):200-U140. doi:10.1038/nature14577

    Google Scholar 

  11. Conway TM, John SG (2014) Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511(7508):212–215. doi:10.1038/nature13482

    Article  CAS  Google Scholar 

  12. Sander SG, Koschinsky A, Massoth GJ, Stott M, Hunter KA (2007) Organic complexation of copper in deep-sea hydrothermal vent systems. Environ Chem 4:81–89. doi:10.1071/EN06086

    Article  CAS  Google Scholar 

  13. Li M, Toner BM, Baker BJ, Breier JA, Sheik CS, Dick GJ (2014) Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nat Commun 5. doi:10.1038/ncomms4192

  14. Rybakova (Goroslavskaya) E, Galkin S (2015) Hydrothermal assemblages associated with different foundation species on the East Pacific Rise and Mid-Atlantic Ridge, with a special focus on mytilids. Mar Ecol 36:45–61

    Google Scholar 

  15. Galkin SV, Demina LL (2016) Geologic-geochemical and ecological characteristics of selected hydrothermal areas. Hdb Env Chem. doi:10.1007/698_2016_3

    Google Scholar 

  16. Kádár E, Costa V, Martins I, Santos RS, Powell JJ (2005) Enrichment in trace metals (Al, Mn, Co, Cu, Mo, Cd, Fe, Zn, Pb and Hg) of the macro-invertebrate habitats at hydrothermal vents along the Mid-Atlantic Ridge. Hydrobiology 548:191–205

    Article  Google Scholar 

  17. Demina LL, Holm NG, Galkin SV, Lein AY (2013) Some features of the trace metal biogeochemistry in the deep-sea hydrothermal vent fields (Menez Gwen, Rainbow, Broken Spur at the MAR and 9o50’N at the EPR): a synthesis. J Mar Syst 126:94–105

    Article  Google Scholar 

  18. Demina LL (2016) Trace metals in water of the hydrothermal biotopes. Hdb Env Chem. doi:10.1007/698_2016_1

    Google Scholar 

  19. Galkin SV (2016) Structure of hydrothermal vent communities. Hdb Env Chem. doi:10.1007/698_2015_5018

    Google Scholar 

  20. Koschinsky A, Kausch M, Borowski C (2014) Metal concentrations in the tissues of the hydrothermal vent mussel Bathymodiolus: reflection of different metal sources. Mar Environ Res 95:62–73

    Article  CAS  Google Scholar 

  21. Koschinsky A (2016) Sources and forms of trace metals taken up by hydrothermal vent mussels, and possible adaption and mitigation strategies. Hdb Env Chem. doi:10.1007/698_2016_2

    Google Scholar 

  22. Demina LL, Galkin SV (2016) Factors controlling the trace metal distribution in hydrothermal vent organisms. Hdb Env Chem. doi:10.1007/698_2016_5

    Google Scholar 

  23. Colaço A, Bustamante P, Fouquet Y, Sarradin PM, Serrão-Santos R (2006) Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction hydrothermal vent fields food web. Chemosphere 65:2260–226722

    Article  Google Scholar 

  24. Demina LL, Galkin SV (2008) On the role of abiogenic factors in the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge. Oceanology 48:784–797

    Article  Google Scholar 

  25. Cosson RP, Thiebaut E, Company R, Castrec-Rouelle M, Colaco A, Martins I, Sarradin P-M, Bebianno MJ (2008) Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. Mar Environ Res 65:405–415

    Article  CAS  Google Scholar 

  26. Demina LL, Galkin SV, Dara OM (2012) Trace metal bioaccumulation in the shells of mussels and clams at deep-sea hydrothermal vent fields. Geochem Int 50(2):133–147

    Article  CAS  Google Scholar 

  27. Kádár E, Santos RS, Powell JJ (2006) Biological factors influencing tissue compartmentalization of trace metals in the deep-sea hydrothermal vent bivalve Bathymodiolus azoricus at geochemically distinct vent sites of the Mid-Atlantic Ridge. Environ Res 101:221–229

    Article  Google Scholar 

  28. Ruelas-Inzunza J, Páez-Osuna F, Soto LA (2005) Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin. Gulf Calif Deep-Sea Res I 52:1319–1323

    Article  CAS  Google Scholar 

  29. Kádár E, Costa V, Segonzac M (2007) Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Sci Total Environ 373:464–472

    Article  Google Scholar 

  30. Gebruk AV, Chevaldonné P, Shank T, Lutz RA, Vrienhoek RC (2000) Deep-sea hydrothermal vent communities of the Logatchev area (14o45’N, Mid-Atlantic Ridge): diverse biotope and high biomass. J Mar Biol Assoc U K 80:383–394

    Article  Google Scholar 

  31. Demina LL, Galkin SV (2010) Polychaete Alvinella pompejana – extrathermophile and metal “champion”. Priroda 8:14–21 (in Russian)

    Google Scholar 

  32. Hessler PR, Smithey WMJ (1983) The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. Hydrothermal processes at seafloor spreading centers. In: Rona P (ed) NATO conference in marine sciences. 12 (IV). N.-Y. Plenum Press, pp 735–770

    Google Scholar 

  33. Sarrazin J, Juniper SK (1999) Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Prog Ser 185:1–19

    Article  Google Scholar 

  34. Desbruyères D, Laubier L (1991) Systematics, phylogeny, ecology and distrubution of the Alvinellida e (Polychaeta) from deep-sea hydrothermal vents. Ophelia 5:31–45

    Google Scholar 

  35. Demina LL (2013) Comparative estimation of trace metal bioaccumulation in the geochemically different zones of the ocean (the marginal filter, euphotic zone and deep-sea hydrothermal vent fields). In: Abstract of GOLDSCHMIDT-2013, Florence, Italy. 25–31 August 971. www.minersoc.org. doi:10.1180/minmag.2013.077.5.4

  36. Demina LL (2015) Quantification of the role of organisms in the geochemical migration of trace metals in the ocean. Geochem Int 53(3):224–240. doi:10.1134/S0016702915030040

    Article  CAS  Google Scholar 

  37. Edwards KJ, Bach W, McCollom T (2005) Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. TRENDS Microbiol 13:449–456

    Article  CAS  Google Scholar 

  38. Schrenk MO, Huber JA, Edwards KJ (2009) Microbial provinces in the subseafloor. Ann Rev Mar Sci 2:279–304

    Article  Google Scholar 

  39. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the sea-floor. Microbiol Mol Biol Rev 75:361–422

    Article  CAS  Google Scholar 

  40. Deming JW, Baross JA (1993) Deep-sea smokers – windows to a subsurface biosphere. Geochim Cosmochim Acta 57:3219–3230

    Article  CAS  Google Scholar 

  41. Furnes H, McLoughlin N, Muehlenbachs K, Banerjee N, Staudigel H, Dilek Y, de Wit M, Van Kranendonk M, Schiffman P (2008) Oceanic pillow lavas and hyaloclastites as habitats for microbial life through time-A review. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities and evolution of life. Springer, New York, pp 1–68

    Chapter  Google Scholar 

  42. Ivarsson M, Holm NG, Neubeck A (2016) The deep biosphere of the subseafloor igneous crust. Hdb Env Chem. doi:10.1007/698_2015_5014

    Google Scholar 

  43. Colaso A, Desbruyères D, Comtet T, Alayse AM (1998) Ecology of the Menez Gwen hydrothermal vent field (Mid-Atlantic Ridge/Azores Triple Junction). Cah Biol Mar 39:237–240

    Google Scholar 

Download references

Acknowledgements

We are grateful to Russian Scientific Foundation (Project No 14-50-00095 “World Ocean in ХХI century: climate, ecosystems, mineral resources and disasters”) for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila L. Demina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demina, L.L., Galkin, S.V. (2016). Conclusions. In: Demina, L., Galkin, S. (eds) Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. The Handbook of Environmental Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/698_2016_8

Download citation

Publish with us

Policies and ethics