Skip to main content

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 50))

  • 839 Accesses

Abstract

Over a period of time after discovery in 1977 of the extraordinary abundant faunal assemblages functioning at the deep-sea hydrothermal vent systems, a new knowledge has been gained of highly dynamic and extreme conditions in their habitats. Hydrothermal vent communities have to survive in habitats which are exposed to high heavy metal load, emitting from vents and dispersing into ambient water and changing physicochemical parameters. All these processes are reflected in the distribution pattern of bottom communities along the gradients of reduced substances that serve a basement for chemosynthetic primary productivity. In the book we aimed to summarize available data, which are of fundamental interest for understanding the trace metal biogeochemistry and ecology of biological communities of deep-sea vent systems. Along with, some interesting aspects of the subseafloor biosphere are considered.

This book is addressed to the specialists working in various fields of environmental problems, especially in marine biogeochemistry and ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vine FJ, Matthews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949

    Article  Google Scholar 

  2. Elder JW (1965) Physical processes in geothermal areas. AGU Monogr 8:211–239

    Google Scholar 

  3. Talwani M, Windish CC, Langseth ML (1971) Reykjanes ridge crest: a detailed geographical study. J Geophys Res 76:473–517

    Article  Google Scholar 

  4. Lister CRB (1972) On the thermal balance of a mid-oceanic ridge. Geophys J Roy Astron Soc 426(26):515–535

    Article  Google Scholar 

  5. Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centres. Deep-Sea Res 24:857–863

    Article  Google Scholar 

  6. Corliss JB, Ballard RD (1977) Oases of life in the cold abyss. Nat Geogr 152:440–453

    Google Scholar 

  7. Jannasch HW, Wirsen GO (1979) Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 79:592–598

    Article  Google Scholar 

  8. Karl DM, Wirsen CO, Jannasch HW et al (1980) Deep-sea primary production at the Galapagos hydrothermal vents. Science 207:1345–1347

    Article  CAS  Google Scholar 

  9. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436

    CAS  Google Scholar 

  10. Van Dover CL, Fry B (1994) Microorganisms as food resources at deep-sea hydrothermal vents. Limnol Oceanogr 39:51–57

    Article  Google Scholar 

  11. Galkin SV (2016) Structure of hydrothermal vent communities. Hdb Env Chem. doi:10.1007/698_2015_5018

    Google Scholar 

  12. Little C (2005) Deep-time perspectives on chemosynthetic communities (vents, seeps and wale-falls). In: Abstract of the 3rd International Symposium on hydrothermal vent and seep biology, Scripps Institute of Oceanography, La Jolla, USA: 2

    Google Scholar 

  13. Rona PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20:1–104

    Article  CAS  Google Scholar 

  14. Lisitzyn AP (1993) Hydrothermal vent systems of the world ocean – supply of endogenous matter. In: Lisitzyn AP (ed) Hydrothermal systems and sedimentary formations of the mid-ocean ridges of the Atlantic Ocean. Nauka, Moscow, pp 147–246

    Google Scholar 

  15. Van Dover CL (2010) Mining seafloor massive sulphides and biodiversity: what is at risk? ICES J Mar Sci. doi:10.1093/icesjms/fsq086

    Google Scholar 

  16. Petersen S (2007) Hydrothermal systems of the modern ocean floor as a perspective mineral resource of the XXI Century. In: Silantiev SA, Bortnikov NS (eds) Materials of the Workshop of the Intern Project InterRidge, IGEM RAS, Moscow, pp 44–46, 1–3 June 2011

    Google Scholar 

  17. Fabri M-C, Bargain A, Briand P, Gebruk A, Fouquet Y, Morineaux M, Desbruyères D (2010) The hydrothermal vent community of a new deep-sea field, Ashadze-1, 12858′N on the Mid-Atlantic Ridge. J Mar Biol Assoc U K, doi:10.1017/S0025315410000731

    Google Scholar 

  18. Hashimoto J, Ohta S, Gamo T, Chiba H, Yamaguchi T, Tsuchida S, Okudaira T, Watabe H, Yamanaka H, Kitazwara M (2001) First hydrothermal vent communities from the Indian Ocean discovered. Zoolog Sci 18(5):717–721

    Article  Google Scholar 

  19. Marsh L, Copley JT, Huvenne VAI, Linse K, Reid WDK et al (2012) Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean. PLoS One 7(10), e48348. doi:10.1371/journal.pone.0048348

    Article  CAS  Google Scholar 

  20. Jones N (2010) Undersea project delivers data flood. Nature 464:1115. doi:10.1038/4641115a

    Article  CAS  Google Scholar 

  21. Bennett SA, Achterberg EP, Connelly DP, Statharn PJ, Fones GR, German CR (2008) The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth Planet Sci Lett 270(3–4):157–167. doi:10.1016/j.epsl.2008.01.048

    Article  CAS  Google Scholar 

  22. German CR, Thurnherr AM, Knoery J, Charlou J-L, Jean-Baptiste P, Edmonds HN (2010) Heat, volume and chemical fluxes from submarine venting: a synthesis of results from the Rainbow hydrothermal field, 36oN MAR. Deep Sea Res I 57:518–527

    Article  CAS  Google Scholar 

  23. Yücel M, Gartman A, Chan CS, Luther GW (2011) Hydrothermal vents as a kinetically stable pyrite (FeS2) nanoparticle source to the ocean. Nat Geosci 4:367–371

    Article  Google Scholar 

  24. Nishioka J, Obata H, Tsumune D (2013) Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean. Earth Planet Sci Lett 361:26–33. doi:10.1016/j.epsl.2012.11.040

    Article  CAS  Google Scholar 

  25. Schlitzer R (2004) Ocean data view. http://odv.awi-bremerhaven.de

  26. Fitzsimmons JN, Boyle EA, Jenkins WJ (2014) Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. Proc Natl Acad Sci 111(47):16654–16661. doi:10.1073/pnas.1418778111

    Article  CAS  Google Scholar 

  27. Lisitzyn AP, Vinogradov ME (1983) Global patterns of living matter distribution in the ocean. In: Monin AS, Lisitzyn AP (eds) Biogeochemistry of the ocean. Nauka, Moscow, pp 279–368 (in Russian)

    Google Scholar 

  28. Lisitzyn AP (2014) Current views on the sedimentation in oceans and seas. The ocean as a natural recorder of the interaction of geospheres of the Earth. In: The world ocean, vol 2. Scientific World, pp 331–553 (in Russian)

    Google Scholar 

  29. Holm NG (1992) Why are hydrothermal systems proposed as plausible environments for the origin of life? In: Holm NG (ed) Marine hydrothermal systems and origin of life, vol 22, Special issue of origins of life and evolution of the biosphere. Kluwer, Dordrecht, pp 5–14

    Chapter  Google Scholar 

  30. Holm NG, Neubeck A (2009) Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and organic synthesis. Geochem Trans 10:1467–1486

    Article  Google Scholar 

  31. Edwards KJ, Bach W, McCollom T (2005) Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. TRENDS Microbiol 13:449–456

    Article  CAS  Google Scholar 

  32. Schrenk MO, Huber JA, Edwards KJ (2009) Microbial provinces in the subseafloor. Ann Rev Mar Sci 2:279–304

    Article  Google Scholar 

  33. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the sea-floor. Microbiol Mol Biol Rev 75:361–422

    Article  CAS  Google Scholar 

  34. Desbruyères D, Almeida A, Biscoito M et al (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216

    Article  Google Scholar 

  35. Gebruk AV, Chevaldonné P, Shank T, Lutz RA, Vrienhoek RC (2000) Deep-sea hydrothermal vent communities of the Logatchev area (14o45′N, Mid-Atlantic Ridge): diverse biotope and high biomass. J Mar Biol Assoc U K 80:383–394

    Article  Google Scholar 

  36. Galkin SV (2002) Hydrothermal vent communities of the World Ocean. Structure, typology, biogeography. GEOS, Moscow, p 99 (in Russian)

    Google Scholar 

  37. Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, p 415

    Google Scholar 

Download references

Acknowledgements

We are very thankful to Springer-Verlag (The Handbook of Environmental Chemistry book series) and one of the Series Editor Prof. Andrey Kostianoy for the idea to publish this book. We wish to thank our colleagues who contributed the chapters, as well as those who helped us in the expeditions, treatment, and analysis of the unique specimens of hydrothermal organisms. Data obtained earlier were generalized with support of Russian Scientific Foundation (Project No 14-50-00095 “World Ocean in ХХI century: climate, ecosystems, mineral resources and disasters”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Galkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Galkin, S.V., Demina, L.L. (2016). Introduction. In: Demina, L., Galkin, S. (eds) Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems. The Handbook of Environmental Chemistry, vol 50. Springer, Cham. https://doi.org/10.1007/698_2016_7

Download citation

Publish with us

Policies and ethics