Flood Hazard Mapping and Modeling Using GIS Applied to the Souss River Watershed

  • Z. E. A. El MorjaniEmail author
  • M. Seif Ennasr
  • A. Elmouden
  • S. Idbraim
  • B. Bouaakaz
  • A. Saad
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 53)


This study describes a simple and cost-effective methodology and process to accurately delineate the flood hazard areas in the Souss River basin from the available database using a geographic information system (GIS).

The approach proposed to spatially distribute flood hazard combines the extent of past flood events with the spatial distribution of causal factors. This combination enables the calculation of a weighted score for each individual causal factor. The spatial distribution of the weighted scores are then aggregated to derive the distribution of the flood hazard index (FHI) before being reclassified to obtain the spatial distribution of the intensity level of flood hazard.

The high-resolution 30 m map resulting from this methodology has been assessed by Souss Massa Draa Hydraulic Basin Agency (ABHSMD) flooding sites information. The cross-validation indicates that the accuracy of the flood hazard distribution map is 85%.

In this context, this map provides actionable information to the decision-making process on development planning, emergency preparedness, and mitigation measures by helping to identify and prioritize areas with high probability of hazard occurrence or intensity in order to avoid any dramatic disaster.

In addition, this work should also be seen as a first step aiming at improving information management in the study area. An important amount of data and information have been compiled, homogenized, updated, and generated.

Finally, this process could be transferred and implemented in other basins or regions of Morocco by using their own accurate and reliable information.


Disaster Flood hazard Geostatistics GIS Gumbel frequency analysis Inundation Mapping Modeling Morocco Souss River Stepwise regression 

References and Further Reading

  1. 1.
    Centre for Research on the Epidemiology of Disasters (CRED) (2015) EM-DAT. The International Disaster Database. Accessed 30 Sept 2015
  2. 2.
    Douben N (2006) Characteristics of river floods and flooding: a global overview, 1985–2003. Irrig Drain 55:S9–S21, published online in Wiley InterScienceGoogle Scholar
  3. 3.
    Chakir L, Aït hssaïne A, Bouaakkaz B (2015) Les crues de l’oued souss et le risque de l’inondation dans le tronçon aval de la vallée (Maroc), Laboratoire: Géo environnement et développement des zones arides et semi-arides (GEDEZA), Département de géographie, Université Ibn Zohr, B.P. 29/S, Agadir, MarocGoogle Scholar
  4. 4.
    United Nations International Strategy for Disaster Reduction (ISDR), Basic terms of disaster risk reduction at Accessed 30 Sept 2015
  5. 5.
    El Morjani ZEA (2011) Preparation of the dataset. Methodology document for the WHO e-atlas of disaster risk. Volume 1. Exposure to natural hazards. Version 2.0. Taroudant poly-disciplinary faculty of the Ibn Zohr University of Agadir, Morocco. ISBN: 978-9954-0-5397-3Google Scholar
  6. 6.
    El Morjani ZEA (2011) Methodology document for the WHO e-atlas of disaster risk. Volume 1. Exposure to natural hazards Version 2.0: Flood hazard modeling. Taroudant poly-disciplinary faculty of the Ibn Zohr University of Agadir, Morocco. ISBN: 978-9954-0-5393-5Google Scholar
  7. 7.
    WHO (2011) The WHO e-atlas of disaster risk for the European Region. Volume 1: exposure to natural hazards. Version 2.0. World Health Organization Regional Office for Europe. Online version. ISBN: 978 92 890 0243. Accessed 30 Sept 2015
  8. 8.
    Gabriele S, Arnell N (1991) A hierarchical approach to regional flood frequency analysis. Water Resour Res 27(6):1281–1289CrossRefGoogle Scholar
  9. 9.
    McKerchar AI, Pearson CP (1990) Maps of flood statistics for regional flood frequency analysis in New Zealand. Hydrol Sci J 35(6):609–621CrossRefGoogle Scholar
  10. 10.
    Pearson CP (1991) Regional flood frequency analysis for small New Zealand basins. J Hydrol (NZ) 30(2):77–79Google Scholar
  11. 11.
    Kjeldsen TR, Smithers JC, Schulze RE (2002) Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index flood method. J Hydrol 255:194–211CrossRefGoogle Scholar
  12. 12.
    Kroll CN, Vogel RM (2002) Probability distribution of low streamflow series in the United States. J Hydrol Eng 7:137–146CrossRefGoogle Scholar
  13. 13.
    Sarma P (1999) Flood risk zone mapping of Dikrong sub basin in Assam. At Accessed 30 Sept 2015
  14. 14.
    USACE (2001) HEC-RAS river analysis system. Hydraulic reference manual. US Army Corps of Engineers (USACE), Hydrological Engineering Center, Davis, CaliforniaGoogle Scholar
  15. 15.
    USACE (2001) HEC-RAS river analysis system. User’s manual. US Army Corps of Engineers (USACE), Hydrological Engineering Center, Davis, CaliforniaGoogle Scholar
  16. 16.
    Al-Rawas G, Koch M, El-Baz F (2001) Using GIS for flash flood hazard mapping in Oman. Earth Obs Mag 10(8):18–20Google Scholar
  17. 17.
    Mannaerts CM (1996) Watershed hydrological methods. ITC postgraduate course in water resources survey lecture notes (MOR46). Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The NetherlandsGoogle Scholar
  18. 18.
    Meijerink AMJ, De Brouwer HAM, Mannaerts CM, Valenzuela CR (1994) Introduction to the use of geographic information system for practical hydrology. International Hydrological Programme, UNESCO and ITC. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The NetherlandsGoogle Scholar
  19. 19.
    Nyarko BK (2002) Application of a rational model in GIS for flood risk assessment in Accra. J Spat Hydrol 2(1):1–14Google Scholar
  20. 20.
    Seth SM (1999) Role of remote sensing and GIS inputs in physically based hydrological modelling. At Accessed 30 Sept 2015
  21. 21.
    Storm B (1989) Introduction to hydrological modelling. In: Proceedings, workshop on application of SHE model to sub-basins of River Narmada, Bhopal, pp 4–15Google Scholar
  22. 22.
    Venkatesh B, Jain MK (1997) Application of TOPMODEL to Malaprabha catchment. NIH report CS/AR-3/97-98. National Institute of Hydrology, Roorkee, IndiaGoogle Scholar
  23. 23.
    Viessman W Jr, Lewis GL (1996) Introduction to hydrology. Harper Collins College Publishers, New YorkGoogle Scholar
  24. 24.
    El Morjani ZEA, Ebener S, Boos J, Abdel GE, Musani A (2007) Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. Int J Health Geogr 6:8CrossRefGoogle Scholar
  25. 25.
    Islam MM, Sado K (2000) Flood hazard map and land development priority map developed using NOAA AVHRR and GIS data. At Accessed 30 Sept 2015
  26. 26.
    Islam MM, Sado K (2000) Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrol Process 14(3):605–620CrossRefGoogle Scholar
  27. 27.
    Bapalu GV, Sinha R (2005) GIS in flood hazard mapping: a case study of Kosi River Basin, India. At Accessed 30 Sept 2015
  28. 28.
    Peduzzi P, Dao H, Herold C (2005) Mapping disastrous natural hazards using global datasets. Nat Hazards 35:265–289CrossRefGoogle Scholar
  29. 29.
    Sanyal J, Xi Lu X (2003) Application of GIS in flood hazard mapping: a case study of Gangetic West Bengal, India. At Accessed 30 Sept 2015
  30. 30.
    Shrestha M (2004) Flood risk and vulnerability mapping using GIS: a Nepal case study. In: Proceedings of the second APHW conference, 5–8 July 2004, 1:180–90. Asia Pacific Association of Hydrology and Water Resources, SingaporeGoogle Scholar
  31. 31.
    Todini F, De Filippis T, De Chiara G, Maracchi G, Martina MLV, Todini E (2004) Using a GIS approach to asses flood hazard at national scale. Presentation presented in European Geosciences Union, 1st General Assembly, Nice, France, 25–30 April 2004Google Scholar
  32. 32.
    UNDP (2004) Reducing disaster risk. A challenge for development. UNDP, Bureau for Crisis Prevention and Recovery, New York. At Accessed 30 Sept 2015
  33. 33.
    El Morjani ZEA (2003) Conception of a Geographic Information System for Environmental Management: application to the selection of domestic and industrial waste disposal sites in a semi-arid region (Souss, Morocco). University of Geneva. Terre & Environnement, vol 42, 300 ppGoogle Scholar
  34. 34.
    Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2014) Global land cover mapping at 30m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens. doi: 10.1016/j.isprsjprs Google Scholar
  35. 35.
    Bayrak GR (2013) Application of GIS to visualize the flood dangerous areas, taking into account morphology and lithology river valley (on the example of valleys of prybeskydskoho precarpathian). Acad J Conf 78:43–48Google Scholar
  36. 36.
    Ambroggi R (1963) Etude géologique du versant méridional du Haut Atlas occidental et de la plaine du Souss. Notes et Mém. Serv. Géol. Maroc, n° 157, p 322Google Scholar
  37. 37.
    Choubert G, Marçais J (1952) Aperçu structural, in Géologie du Maroc. Tome 7. Notes et Mém. Serv. Géol. Maroc, n° 100, fasc.1, 1ère partieGoogle Scholar
  38. 38.
    Choubert G, Ambroggi R (1953) Note préliminaire sur la présence de deux cycles sédimentaires dans le Pliocène marin du Maroc. Tome 7. Notes et Mém. Serv. Géol. Maroc, n° 117, pp 3–72Google Scholar
  39. 39.
    Choubert G (1963) Histoire géologique du Précambrien de l'Anti-Atlas. Tome 1. Notes et Mém. Serv. Géol. Maroc, n° 162, p 352Google Scholar
  40. 40.
    Dijon R (1969) Etude hydrogéologique et Inventaire des ressources en eau dans la vallée du Souss. Notes et Mem. Serv. Géol. Maroc, n° 214, p 299Google Scholar
  41. 41.
    Koning G (1957) Géologie des Ida-ou-Zal (Maroc). Stratigraphie, pétrographie et tectonique de la partie SW du bloc occidental du Massif ancien du Haut-Atlas. Edward IjdoN.V., Leyde, p 210Google Scholar
  42. 42.
    Neltner L (1938) Etudes géologiques dans le sud marocain (Haut-Atlas et Anti-Atlas). Notes et Mém. Serv. Géol. Maroc, n° 42, p 298Google Scholar
  43. 43.
    FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, AustriaGoogle Scholar
  44. 44.
    Watteeuw R (1964) Les sols de la plaine du Sous et leur répartition schématique au 1/500.000. Al Awamia n°10, Rabat, pp 141–185Google Scholar
  45. 45.
    Condie R, Lee KA (1982) Flood frequency analysis with historic information. J Hydrol 58:47–61CrossRefGoogle Scholar
  46. 46.
    Fuller WE (1914) Flood flows. Trans Am Soc Civ Eng 77:564–617Google Scholar
  47. 47.
    Foster HA (1935) Duration curves. Trans Am Soc Civ Eng 99:1213–1235Google Scholar
  48. 48.
    Gerard R, Karpuk EW (1979) Probability analysis of historical flood data. J Hydraul Div ASCE 105(HY9):1153–1165Google Scholar
  49. 49.
    Gumbel EJ (1941) The return period of flood flows. Ann Math Stat 12(2):163–190CrossRefGoogle Scholar
  50. 50.
    Gumbel EJ (1942) Statistical control curves for flood discharges. Trans Am Geophys Union 23:489–500CrossRefGoogle Scholar
  51. 51.
    Jones T, Middelmann M, Corby N (2005) Natural hazard risk in Perth, Western Australia. Geoscience Australia, CanberraGoogle Scholar
  52. 52.
    Kite GW (1977) Frequency and risk analyses in hydrology. Water Resources Publications, Fort CollinsGoogle Scholar
  53. 53.
    Moin SMA, Shaw MA (1985) Regional flood frequency analysis for Ontario streams: volume 1, single station analysis and index method. Inland Waters Directorate, Environment Canada, BurlingtonGoogle Scholar
  54. 54.
    Stedinger JR, Vogel RM, Foufoula-Georgiou E (1992) Frequency analysis of extreme events. In: Maidment DA (ed) Handbook of hydrology. McGraw-Hill, New YorkGoogle Scholar
  55. 55.
    Stolte W, Dumontier S (1977) Flood frequency analysis for mountainous and prairie streams. University of Saskatchewan and Alberta Environment, EdmontonGoogle Scholar
  56. 56.
    USACE (1993) Hydrologic frequency analysis. Engineer Manual 1110-2-1415. US Army Corps of Engineers, WashingtonGoogle Scholar
  57. 57.
    Gumbel EJ (1954) The statistical theory of droughts. Proc Am Soc Civ Eng 80:1–19Google Scholar
  58. 58.
    Gumbel EJ (1960) Bivariate exponential distribution. J Am Stat Assoc 55:698–707CrossRefGoogle Scholar
  59. 59.
    Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resour Res 15:1055–1064CrossRefGoogle Scholar
  60. 60.
    Vogel RM (1986) The probability plot correlation coefficient test for the normal, lognormal, and Gumbel distributional hypotheses. Water Resour Res 22(4):587–590, corrections, 23(10):2013CrossRefGoogle Scholar
  61. 61.
    Koutsoyiannis D (2004) On the appropriateness of the Gumbel distribution for modelling extreme rainfall. In: Hydrological risk: recent advances in peak river flow modelling, prediction and real-time forecasting. Assessment of the impacts of land-use and climate changes. Editoriale Bios, Castrolibero, Bologna, Italy, pp 303–319Google Scholar
  62. 62.
    He Y, Bárdossy A, Brommundt J, Enzenhöfer R (2006) Non-stationary flood frequency analysis in the context of climate variability. Geophys Res Abstr 8:04597Google Scholar
  63. 63.
    Meylan P, Musy A (1999) Hydrologie fréquentielle. Editions HGA, Bucharest, p 413Google Scholar
  64. 64.
    MacEachren AM, Davidson JV (1987) Sampling and isometric mapping of continuous geographic surfaces. Am Cartographer 14(4):299–320CrossRefGoogle Scholar
  65. 65.
    Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41:11–21CrossRefGoogle Scholar
  66. 66.
    Eischeid JK, Baker FB, Karl TR, Diaz HF (1995) The quality control of long-term climatological data using objective data analysis. J Appl Meteorol 34(12):2787–2795CrossRefGoogle Scholar
  67. 67.
    Lennon JJ, Turner JRG (1995) Predicting the spatial distribution of climate: temperature in Great Britain. J Anim Ecol 64:370–392CrossRefGoogle Scholar
  68. 68.
    Willmott CJ, Matsuura K (1995) Smart interpolation of annually averaged air temperature in the United States. J Appl Meteorol 34(12):2577–2586CrossRefGoogle Scholar
  69. 69.
    Collins Jr FC, Bolstad PV (1996) A comparison of spatial interpolation techniques in temperature estimation. In: Proceedings of the third international conference/workshop on integrating GIS and environmental modeling, Santa Fe, New Mexico, 21–25 Jan 1996Google Scholar
  70. 70.
    Ashraf M, Loftis JC, Hubbard KG (1997) Application of geostatistics to evaluate partial weather station networks. Agric For Meteorol 84(3–4):255–271CrossRefGoogle Scholar
  71. 71.
    Dodson R, Marks D (1997) Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Res 8(1):1–20CrossRefGoogle Scholar
  72. 72.
    Eckstein BA (1989) Evaluation of spline and weighted average interpolation algorithms. Comput Geosci 15(1):79–94CrossRefGoogle Scholar
  73. 73.
    Hutchinson MF, Gessler PE (1994) Splines—more than just a smooth interpolator. Geoderma 62:45–67CrossRefGoogle Scholar
  74. 74.
    Hulme M, Conway D, Jones PD, Jiang T, Barrow EM, Turney C (1995) Construction of a 1961–1990 European climatology for climate change modelling and impact applications. Int J Climatol 15:1333–1363CrossRefGoogle Scholar
  75. 75.
    Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266CrossRefGoogle Scholar
  76. 76.
    Hudson G, Wackernagel H (1994) Mapping temperature using kriging with external drift: theory and an example from Scotland. Int J Climatol 14:77–91CrossRefGoogle Scholar
  77. 77.
    Hammond T, Yarie J (1996) Spatial prediction of climatic state factor regions in Alaska. Ecoscience 3(4):490–501CrossRefGoogle Scholar
  78. 78.
    Holdaway MR (1996) Spatial modelling and interpolation of monthly temperature using kriging. Climate Res 6:215–225CrossRefGoogle Scholar
  79. 79.
    Myers RH (1990) Classical and modern regression with applications. PWS-Kent Publishing, BostonGoogle Scholar
  80. 80.
    Benzi R, Deidda R, Marrocu M (1997) Characterization of temperature and precipitation fields over Sardinia with principal component analysis and singular spectrum analysis. Int J Climatol 17(11):1231–1262CrossRefGoogle Scholar
  81. 81.
    Chessa PA, Delitala AM (1997) Objective analysis of daily extreme temperatures of Sardinia (Italy) using distance from the sea as independent variable. Int J Climatol 17(13):1467–1485CrossRefGoogle Scholar
  82. 82.
    Hargy VT (1997) Objectively mapping accumulated temperature for Ireland. Int J Climatol 17(9):909–927CrossRefGoogle Scholar
  83. 83.
    Vogt JV, Viau AA, Paquet F (1997) Mapping regional air temperature fields using satellite-derived surface skin temperatures. Int J Climatol 17(14):1559–1579CrossRefGoogle Scholar
  84. 84.
    Agnew MD, Palutikof JP (2000) GIS-based construction of baseline climatologies for the Mediterranean using terrain variables. Climate Res 14:115–127CrossRefGoogle Scholar
  85. 85.
    Li J, Huang JF, Wang XZ (2006) A GIS-based approach for estimating spatial distribution of seasonal temperature in Zhejiang province, China. J Zhejiang Univ Sci A 7(4):647–656CrossRefGoogle Scholar
  86. 86.
    Barry RG (1992) Mountain weather and climate, 2nd edn. Methuen, LondonGoogle Scholar
  87. 87.
    Guan H, Wilson JL, Makhnin O (2005) Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J Hydromet 6:1018–1031CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Z. E. A. El Morjani
    • 1
    Email author
  • M. Seif Ennasr
    • 2
  • A. Elmouden
    • 2
  • S. Idbraim
    • 2
  • B. Bouaakaz
    • 3
  • A. Saad
    • 1
  1. 1.Taroudant Poly-Disciplinary FacultyIbn Zohr University of AgadirAgadirMorocco
  2. 2.Faculty of ScienceIbn Zohr University of AgadirAgadirMorocco
  3. 3.Souss Massa Draa Hydraulic Basin AgencyAgadirMorocco

Personalised recommendations