Skip to main content

Fate and Degradation of Emerging Contaminants in Rivers: Review of Existing Models

  • Chapter
  • First Online:
Emerging Contaminants in River Ecosystems

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 46))

Abstract

Nowadays, society and regulatory authorities claim rigorous environmental risk and exposure assessment procedures. Prediction models of emerging contaminants may provide results within these assessment practices. This review gathers models that have been used by scientific researchers in order to predict emerging contaminant concentrations in rivers. A description of PhATE, GREAT-ER, WASP, SWMM, EUSES, QUAL2E, ChemCAN and AQUASIM models is provided. After reviewing more than 40 scientific applications of these emerging contaminant models, PhATE and GREAT-ER result to be the most used tools in the literature. Overall most applications point out the utility and necessity of these models. In any case, uncertainty is always related to any model outcomes. Thus, an analysis of propagated uncertainty in emerging contaminant basic processes is reviewed. Results indicate that the apparent contaminant emission from the population is the most significant issue in terms of propagated uncertainty. All considered factors suggest that there is still potential for further development of emerging contaminant models and that there is still the necessity of complementing the applications with measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

API:

Active pharmaceutical ingredient

EC:

Emerging contaminants

EU:

European Union

GIS:

Geographic information system

PEC:

Predicted environmental concentration

PhRMA:

Pharmaceutical Research and Manufacturers of America

PNEC:

Predicted no-effect concentration

UK:

United Kingdom

US and USA:

United States of America

USEPA:

US Environmental Protection Agency

WWTP:

Wastewater treatment plant

References

  1. Salas JD, Govindaraju RS, Anderson M, Arabi M, Francés F, Suarez W, Lavado-Casimiro WS, Green TR (2014) Introduction to hydrology. In: Wang LK, Yang CT (eds) Modern water resources engineering. Humana Press Springer, New York, pp 1–126

    Chapter  Google Scholar 

  2. Feijtel T, Boeije G, Matthies M et al (1997) Development of a geography-referenced regional exposure assessment tool for European rivers – great-er contribution to great-er #1. Chemosphere 34(11):2351–2373

    Article  CAS  Google Scholar 

  3. Anderson PD, D’Aco VJ, Shanahan P et al (2004) Screening analysis of human pharmaceutical compounds in US surface waters. Environ Sci Technol 38:838–849

    Article  CAS  Google Scholar 

  4. Lehner B, Grill G (2013) Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol Process 27:2171–2486

    Article  Google Scholar 

  5. Mackay D (2001) Multimedia environmental models: the fugacity approach, 2nd edn. Lewis, Boca Raton

    Book  Google Scholar 

  6. Mackay D, Di Guardo A, Paterson S et al (1996) Assessment of chemical fate in the environment using evaluative, regional and local-scale models: Illustrative application to chlorobenzene and linear alkylbenzene sulfonates. Environ Toxicol Chem 15(9):1638–1648

    Article  CAS  Google Scholar 

  7. Boeije G, Vanrolleghem P, Matthies M (1997) A geo-referenced aquatic exposure prediction methodology for “down-the-drain” chemicals. Wat Sci Technol 36(5):251–258

    Article  CAS  Google Scholar 

  8. Keller V (2006) Risk assessment of “down-the-drain” chemicals: search for a suitable model. Sci Total Environ 360:305–318

    Article  CAS  Google Scholar 

  9. Cunningham VL, D’Aco VJ, Pfeiffer D et al (2011) Predicting concentrations of trace organic compounds in municipal wastewater treatment plant sludge and biosolids using the PhATETM model. Integr Environ Assess Manag 8(3):530–542

    Article  Google Scholar 

  10. Park J, Kim MH, Choi K et al (2007) Environmental risk assessment of pharmaceuticals: model application for estimating pharmaceutical exposures in the Han River Basin. Korea Environment Institute, Seoul

    Google Scholar 

  11. Hannah R, D'Aco VJ, Anderson PD et al (2009) Exposure assessment of 17a-ethinylestradiol in surface waters of the United States and Europe. Environ Toxicol Chem 28(12):2725–2732

    Article  CAS  Google Scholar 

  12. Cunningham VL, Constable DJC, Hannah RE (2004) Environmental risk assessment of paroxetine. Environ Sci Technol 38:3351–3359

    Article  CAS  Google Scholar 

  13. Cunningham VL, Binks SP, Olson MJ (2009) Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regul Toxicol Pharmacol 53(1):39–45

    Article  CAS  Google Scholar 

  14. Robinson PF, Liu QT, Riddle AM et al (2007) Modeling the impact of direct phototransformation on predicted environmental concentrations (PECs) of propranolol hydrochloride in UK and US rivers. Chemosphere 66(4):757–766

    Article  CAS  Google Scholar 

  15. Cunningham VL, Perino C, D'Aco VJ et al (2010) Human health risk assessment of carbamazepine in surface waters of North America and Europe. Regul Toxicol Pharmacol 56(3):343–351

    Article  CAS  Google Scholar 

  16. Schwab BW, Hayes EP, Fiori JM (2005) Human pharmaceuticals in US surface waters: a human health risk assessment. Regul Toxicol Pharmacol 42(3):296–312

    Article  CAS  Google Scholar 

  17. Caldwell DJ, Mastrocco F, Nowak E et al (2010) An assessment of potential exposure and risk from estrogens in drinking water. Environ Health Perspect 118(3):338–344

    Article  CAS  Google Scholar 

  18. Anderson PD, Johnson AC, Pfeiffer D et al (2012) Endocrine disruption due to estrogens derived from humans predicted to be low in the majority of US surface waters. Environ Toxicol Chem 31(6):1407–1415

    Article  CAS  Google Scholar 

  19. Hosseini NAA, Parker WJJ, Matott LSL (2013) Modelling concentrations of pharmaceuticals and personal care products in a Canadian watershed. Can Water Resour J 37(3):191–208

    Article  Google Scholar 

  20. Chieng B (2012) Descriptive assessment and amendment of the simple treat model. Faculty of Engineering, Lund University, Sweden

    Google Scholar 

  21. Struijs J (1996) Simple Treat 3.0: a model to predict the distribution and elimination of chemicals by sewage treatment plants. National Institute of Public Health and Environmental Protection, Bilthoven, RIVM Report No. 719101025

    Google Scholar 

  22. Arlos MJ (2013) Characterization and modelling of selected antiandrogens and pharmaceuticals in highly impacted reaches of Grand River Watershed in Southern Ontario. University of Waterloo, Ontario

    Google Scholar 

  23. Alder AC, Schaffner C, Majewsky M et al (2010) Fate of b-blocker human pharmaceuticals in surface water: comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Res 44(3):936–948

    Article  CAS  Google Scholar 

  24. Johnson AC, Keller V, Williams RJ et al (2007) A practical demonstration in modeling diclofenac and propranolol river water concentrations using a GIS hydrology model in a rural UK catchment. Environ Pollut 146:155–165

    Article  CAS  Google Scholar 

  25. Schowanek D, Webb S (2000) Examples of exposure assessment simulation for pharmaceuticals in river basins with the GREAT-ER 1.0 system. In: KVIV Seminar ‘Pharmaceuticals in the Environment’, Brussels, 9 March 2000

    Google Scholar 

  26. Van de Meent D (1993) SimpleBox: a generic multimedia fate evaluation model. National Institute of Public Health and Environmental Protection, Bilthoven, RIVM Report No 672720001

    Google Scholar 

  27. Klasmeier J, Matthies M (2001) Application of the geography-referenced environmental assessment tool for European rivers (GREAT-ER) in the catchment of the River Main (Germany). Institute of Environmental System Research. University of Osnabrück, Osnabrück

    Google Scholar 

  28. Price OR, Munday DK, Whelan MJ (2009) Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments. Environ Pollut 157(10):2610–2616

    Article  CAS  Google Scholar 

  29. Wind T, Werner U, Jacob M, Hauk A (2004) Environmental concentrations of boron, LAS, EDTA, NTA and triclosan simulated with GREAT-ER in the river Itter. Chemosphere 54(8):1135–1144

    Article  CAS  Google Scholar 

  30. Johnson AC, Jürgens MD, Williams RJ et al (2008) Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. J Hydrol 348(1–2):167–175

    Article  CAS  Google Scholar 

  31. Hüffmeyer N, Klasmeier J, Matthies M (2009) Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER. Sci Total Environ 407(7):2296–2305

    Article  Google Scholar 

  32. Schröder FR, Schulze C, Matthies M (2002) Concentration of LAS and boron in the Itter. Comparison of measured data with results obtained by simulation with the GREAT-ER software. Environ Sci Pollut Res Int 9(2):130–135

    Article  Google Scholar 

  33. Schulze C, Matthies M (2001) Georeferenced aquatic fate simulation of cleaning agent and detergent ingredients in the river Rur catchment (Germany). Sci Total Environ 280(1–3):55–77

    Article  CAS  Google Scholar 

  34. Sabaliunas D, Webb SF, Hauk A et al (2003) Environmental fate of triclosan in the River Aire Basin, UK. Water Res 37(13):3145–3154

    Article  CAS  Google Scholar 

  35. Price OR, Williams RJ, Van Egmond R et al (2010) Predicting accurate and ecologically relevant regional scale concentrations of triclosan in rivers for use in higher-tier aquatic risk assessments. Environ Int 36(6):521–526

    Article  CAS  Google Scholar 

  36. Sumpter JP, Johnson AC, Williams RJ et al (2006) Modeling effects of mixtures of endocrine disrupting chemicals at the river catchment scale. Environ Sci Technol 40(17):5478–5489

    Article  CAS  Google Scholar 

  37. Aldekoa J, Medici C, Osorio V et al (2013) Modelling the emerging pollutant diclofenac with the GREAT-ER model: application to the Llobregat River Basin. J Hazard Mater 263:207–213

    Article  CAS  Google Scholar 

  38. Holt MS, Fox KK, Burford M et al (1998) UK monitoring study on the removal of linear alkylbenzene sulphonate in trickling filter type sewage treatment plants. Contribution to GREAT-ER project # 2. Sci Total Environ 210–211:255–269

    Article  Google Scholar 

  39. Schowanek D, Webb S (2002) Exposure simulation for pharmaceuticals in European surface waters with GREAT-ER. Toxicol Lett 131(1–2):39–50

    Article  CAS  Google Scholar 

  40. Verdonck F, Boeije G, Schowanek D et al. (2000) Geography-referenced regional exposure tool for European rivers (GREAT-ER): a case study for the Rupel basin. Proceedings of the 4th international conference on integrating GIS and environmental modeling (GIS/EM4), Banff, Alberta, 2–8 September 2000

    Google Scholar 

  41. Young AR, Grew R, Holmes MG (2003) Low flows 2000: a national water resources assessment and decision support tool. Water Sci Technol 48(10):119–126

    CAS  Google Scholar 

  42. Wind T (2004) Prognosis of environmental concentrations by geo-referenced and generic models: a comparison of GREAT-ER and EUSES exposure simulations for some consumer-product ingredients in the Itter. Chemosphere 54(8):1145–1153

    Article  CAS  Google Scholar 

  43. Di Toro DM, Fitzpatrick JJ, Thomann RV (1983) Documentation for water quality analysis simulation program (WASP) and model verification program (MVP). Envir Res Lab EPA-600/3-81-044

    Google Scholar 

  44. Rygwelski KR, Richardson WL, Endicott DD (1999) A screening-level model evaluation of atrazine in the Lake Michigan basin. J Great Lakes Res 25(1):94–106

    Article  CAS  Google Scholar 

  45. Metcalf and Eddy (1971) Storm water management model, volume I – final report. US Environmental Protection Agency, Washington, EPA Report No 11024 DOC 07/71 (NTIS PB-203289)

    Google Scholar 

  46. Jang S, Cho M, Yoon J et al (2007) Using SWMM as a tool for hydrologic impact assessment. Desalination 212(1–3):344–356

    Article  CAS  Google Scholar 

  47. Struijs J, Van de Meent D, Stoltenkamp J (1991) SimpleTreat: a spreadsheet-based box model to predict the fate of xenobiotics in a municipal waste water treatment plant. National Institute of Public Health and Environmental Protection, Bilthoven, RIVM Report No. 670208002

    Google Scholar 

  48. Carlsson C, Johansson AK, Alvan G et al (2006) Are pharmaceuticals potent environmental pollutants? Part II: Environmental risk assessments of selected pharmaceutical excipients. Sci Total Environ 364:88–95

    Article  CAS  Google Scholar 

  49. Jaworska JS, Schowanek D, Feijtel TCJ (1999) Environmental risk assessment for trisodium [S, S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere 38(15):3597–3625

    Article  CAS  Google Scholar 

  50. Kawamoto K, MacLeod M, Mackay D (2001) Evaluation and comparison of multimedia mass balance models of chemicals fate: application of EUSES and ChemCAN to 68 chemicals in Japan. Chemosphere 44(4):599–612

    Article  CAS  Google Scholar 

  51. Schwartz S, Berding V, Matthies M (2000) Aquatic fate assessment of the polycyclic musk fragrance HHCB: scenario and variability analysis in accordance with the EU risk assessment guidelines. Chemosphere 41(5):671–679

    Article  CAS  Google Scholar 

  52. Webster E, Mackay D, Di Guardo A et al (2004) Regional differences in chemical fate model outcome. Chemosphere 55(10):1361–1376

    Article  CAS  Google Scholar 

  53. Cubillo F, Rodriguez B, Barnwell TO (1992) A system for control of river water-quality for the community of Madrid using Qual2e. Water Sci Technol 26(7–8):1867–1873

    Google Scholar 

  54. Drolc A, Končan JZ (1999) Calibration of QUAL2E model for the Sava River (Slovenia). Water Sci Technol 40(10):111–118

    Article  CAS  Google Scholar 

  55. Ghosh NC, McBean EA (1998) Water quality modeling of the Kali River, India. Water Air Soil Pollut 102(1–2):91–103

    Article  CAS  Google Scholar 

  56. Ning SK, Chang NB, Yang L et al (2001) Assessing pollution prevention program by QUAL2E simulation analysis for the Kao-Ping River Basin, Taiwan. J Environ Manage 61(1):61–76

    Article  CAS  Google Scholar 

  57. McAvoy DC, Masscheleyn P, Peng C et al (2003) Risk assessment approach for untreated wastewater using the QUAL2E water quality model. Chemosphere 52(1):55–56

    Article  CAS  Google Scholar 

  58. Okasaki S, Fono L, Sedlak DL et al. (2002) Assessment of the unintentional reuse of municipal wastewater. In: Abstract of the fall meeting 2002, American Geophysical Union

    Google Scholar 

  59. Managaki S, Enomoto I, Masunaga S (2012) Sources and distribution of hexabromocyclododecanes (HBCDs) in Japanese river sediment. J Environ Monit 14:901–907

    Article  CAS  Google Scholar 

  60. Reichert P (1994) Aquasim a tool for simulation and data analysis of aquatic systems. Water Sci Technol 30(2):21–30

    CAS  Google Scholar 

  61. Buser HR, Poiger T, Muller MD (1998) Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ Sci Technol 32(22):3449–3456

    Article  CAS  Google Scholar 

  62. Poiger T, Buser HR, Müller MD (2001) Photodegradation of the pharmaceutical drug diclofenac in a lake: pathway, field measurements, and mathematical modeling. Environ Toxicol Chem 20(2):256–263

    Article  CAS  Google Scholar 

  63. Poiger T, Kari FG, Giger W (1999) Fate of fluorescent whitening agents in the River Glatt. Environ Sci Technol 33(4):533–539

    Article  CAS  Google Scholar 

  64. Tixier C, Singer HP, Canonica S et al (2002) Phototransformation of triclosan in surface waters: a relevant elimination process for this widely used biocides – laboratory studies, field measurements, and modeling. Environ Sci Technol 36(16):3482–3489

    Article  CAS  Google Scholar 

  65. Zepp RG, Cline DM (1977) Rates of direct photolysis in aquatic environment. Environ Sci Technol 11(4):359–366

    Article  CAS  Google Scholar 

  66. Refsgaard JC, van der Sluijs JP, Højberg AL et al (2007) Uncertainty in the environmental modelling process – a framework and guidance. Environ Model Software 22(11):1543–1556

    Article  Google Scholar 

  67. Uusitalo L, Lehikoinen A, Helle I et al (2015) An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ Model Software 63:24–31

    Article  Google Scholar 

  68. Ort C, Lawrence MG, Rieckermann J et al (2010) Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ Sci Technol 44(16):6024–6035

    Article  CAS  Google Scholar 

  69. Renard B, Kavetski D, Kuczera G (2010) Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resour Res 46(5). doi:10.1029/2009WR008328

  70. Acuña V, Von Schiller D, García-Galán MJ et al (2015) Occurrence and in-stream attenuation of wastewater derived pharmaceuticals in Iberian rivers. Sci Total Environ 503–504:133–141

    Article  Google Scholar 

  71. Clara M, Kreuzinger N, Strenn B et al (2005) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39(1):97–106

    Article  CAS  Google Scholar 

  72. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation and confirmation of numerical models in the earth sciences. Science 263(5147):641–646

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Francés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aldekoa, J., Marcé, R., Francés, F. (2015). Fate and Degradation of Emerging Contaminants in Rivers: Review of Existing Models. In: Petrovic, M., Sabater, S., Elosegi, A., Barceló, D. (eds) Emerging Contaminants in River Ecosystems. The Handbook of Environmental Chemistry, vol 46. Springer, Cham. https://doi.org/10.1007/698_2015_5017

Download citation

Publish with us

Policies and ethics