Skip to main content

Spatial and Temporal Changes in Water Quality Along the Basin

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 62))

Abstract

The hydrological system of the Suquía River comprises three drainage areas with different anthropogenic impacts. A water quality index proposed for the Suquía River Basin was calculated in order to characterise the condition of 23 sampling sites based on the physicochemical and bacteriological variables studied from 1995 to 2011. The data analysis indicates that the river water has good quality along the upper and middle basins, but suffers a significant degradation (to medium quality) while crossing Córdoba City. Even after 100 km downstream from the discharge of the wastewater treatment plant (WWTP) of the city, the water exhibits bad quality, without recovering the good levels observed upstream from the city. Moreover, some water quality parameters surpass the water quality guidelines established for the protection of the aquatic biota.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chapman D (1992) In: Chapman D (ed) Water quality assessment. On behalf of UNESCO, WHO, and UNEP. Chapman & Hall, London 585 pp

    Google Scholar 

  2. León J (2013) Efecto de la dinámica de nutrientes sobre el fitoplancton en el embalse El Carrizal. Relación con la calidad y el uso del agua. Universidad Nacional de Córdoba, Mendoza

    Google Scholar 

  3. Pesce SF, Wunderlin DA (2000) Use of water quality indices to verify the impact of Cordoba City (Argentina) on Suquia River. Water Res 34:2915–2926

    Article  CAS  Google Scholar 

  4. Wunderlin DA, Diaz MP, Amé MV, Pesce SF, Hued AC, Bistoni MA (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Cordoba, Argentina). Water Res 35:2881–2894

    Article  CAS  Google Scholar 

  5. Pasquini AI, Formica SM, Sacchi G (2011) Hydrochemistry and nutrients dynamic in the Suquía River urban catchment’s, Córdoba, Argentina. Environ Earth Sci 65(2):453–467

    Article  Google Scholar 

  6. Vázquez JB, Lopez-Robles A, Saez MP (1979) Aguas. In: Vázquez JB, Miatello RA, Roque M, (eds) Geografía física de la provincia de Córdoba. Banco Provincia de Córdoba, Córdoba, pp 139–211

    Google Scholar 

  7. Gaiero D, Roman Ross G, Depetris PJ, Kempe S (1997) Spatial and temporal variability of total non-residual heavy metals content in stream sediments from the Suquía River system, Córdoba, Argentina. Water Air Soil Pollut 93:303–319

    CAS  Google Scholar 

  8. Merlo C, Abril A, Amé MV, Argüello GA, Carreras HA, Chiappero MS et al (2011) Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs. Sci Total Environ 409(23):5034–5045

    Article  CAS  Google Scholar 

  9. Association Official Analytical Chemists (AOAC) (1995) AOAC official methods of analysis. 16th edn. (March 1999 revision). AOAC International, Gaithersburg

    Google Scholar 

  10. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) (1998) In: Clesceri LS, Greenberg AH, Eaton AD (eds) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  11. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) (2005) In: Eaton AD, Clesceri LS, Rice EW, Greenberg AH (eds) Standard methods for the examination of water and wastewater. APHA, Baltimore

    Google Scholar 

  12. Dasso C (1998) CIRSA (Centro de la Región Semiárida-Semiarid Region Center) INA (Instituto Nacional del Agua y del Ambiente-National Water and Environment Institute), unpublished results

    Google Scholar 

  13. Monferrán MV, Galanti LN, Bonansea RI, Amé MV, Wunderlin DA (2011) Integrated survey of water pollution in the Suquía River basin (Córdoba, Argentina). J Environ Mon 13(2):398–409

    Article  Google Scholar 

  14. Contardo-Jara V, Galanti LN, Amé MV et al (2009) Biotransformation and antioxidant enzymes of Limnoperna fortunei detect site impact in watercourses of Córdoba Argentina. Ecotoxicol Environ Saf 72:1871–1880

    Article  CAS  Google Scholar 

  15. Mancini C (2012) Impacto del Vertido de la Estación Depuradora de Aguas Residuales (EDAR) Bajo Grande sobre el Río Primero (Suquía). Technical report Centro de Tecnología de Química Industrial. Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba

    Google Scholar 

  16. Hued AC, Bistoni MA (2005) Development and validation of a Biotic Index for evaluation of environmental quality in the central region of Argentina. Hydrobiologia 543(1):279–298

    Article  Google Scholar 

  17. Hued AC, Dardanelli S, Bistoni MA (2010) Temporal and spatial variability of fish assemblages in a river basin with an environmental degradation gradient. Community Ecol 11(1):41–50

    Article  Google Scholar 

  18. Ott WR (1978) Water quality indices: a survey of indices used in the United States, EPA-600/4-78-005. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  19. Golge M, Yenilmez F, Aksoy A (2013) Development of pollution indices for the middle section of the Lower Seyhan Basin (Turkey). Ecol Ind 29:6–17

    Article  CAS  Google Scholar 

  20. Haldar S, Mandal SK, Thorat RB, Goel S, Baxi KD, Parmer NP et al (2014) Water pollution of Sabarmati River-a harbinger to potential disaster. Environ Mon Assess 186(4):2231–2242

    Article  CAS  Google Scholar 

  21. Bere T, Tundisi JG (2011) Applicability of borrowed diatom-based water quality assessment indices in streams around São Carlos-SP, Brazil. Hydrobiologia 673(1):179–192

    Article  CAS  Google Scholar 

  22. Argentinean Environmental Water Quality Guidelines (AEWQG); Niveles Guía Nacionales de Calidad de Agua Ambiente. Subsecretaría de Recursos Hídricos de la Nación, República Argentina (2003) www.hidricosargentina.gov.ar/NivelCalidad1.html. Accessed 27 July 2012

  23. Canadian Council of Ministers of the Environment (CCME) (2002) Canadian water quality guidelines for the protection of aquatic life. In: Canadian Environmental Quality, Quality, 1999, Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Valeria Amé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amé, M.V., Pesce, S.F. (2015). Spatial and Temporal Changes in Water Quality Along the Basin. In: Wunderlin, D.A. (eds) The Suquía River Basin (Córdoba, Argentina). The Handbook of Environmental Chemistry, vol 62. Springer, Cham. https://doi.org/10.1007/698_2015_434

Download citation

Publish with us

Policies and ethics