Skip to main content

Organic Pollutants in the Suquía River Basin

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 62))

Abstract

Organic pollutants have been detected in water, sediment, suspended particulate matter (SPM) and biota of the Suquía River Basin. It has been observed that the presence of these pollutants is closely related to the anthropic activity carried out at the basin. The upper basin shows the presence of cyanotoxins in water reservoirs due to water eutrophication caused by urban and touristic activities. In the middle basin, Córdoba City is the main source of organic pollutants. Downstream from this city, its wastewater treatment plant (WWTP) releases the highest amount and variety of organic pollutants, which are associated with human activities. Downstream from the WWTP, after the beginning of the lower basin, the riverbank is dominated by farms with diverse agricultural practices, including the use of several agrochemicals, like glyphosate and its metabolite AMPA, chlorinated pesticides and some veterinary medicines, all of them detected in the river water, sediment and biota. Some of these pollutants are retained in the sediment along the lower basin, while others are transported until reaching the river mouth at the Mar Chiquita Lake. Exposure to these pollutants, whether by drinking or ingesting them from polluted biota, represents a health risk to aquatic organisms, wildlife, domestic animals and humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nagata Y, Miyauchi K, Damborsky J, Manova K, Ansorgova A, Takagi M (1997) Purification and characterization of a new substrate class from a γ-hexachlorocyclohexane-degrading bacterium, Sphingomonas paucimobilis UT26. Appl Environ Microbiol 63:3707–3710

    CAS  Google Scholar 

  2. Pesce SF, Wunderlin DA (2000) Use of Water quality indices to verify the impact of Córdoba city (Argentina) on Suquía river. Water Res 34(11):2915–2926

    Article  CAS  Google Scholar 

  3. Ballesteros ML, Miglioranza KSB, Gonzalez M, Fillmann G, Wunderlin DA, Bistoni MA (2014) Multimatrix measurement of persistent organic pollutants in Mar Chiquita, a continental saline shallow lake. Sci Total Environ 490:73–80

    Article  CAS  Google Scholar 

  4. Beurskens JE, Dekker CGC, van den Heuvel H, Swart M, de Wolf J (1994) Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamic most favourable reactions. Environ Sci Technol 28:701–706

    Article  CAS  Google Scholar 

  5. He Y, Wang Y, Lee HK (2000) Trace analysis of ten chlorinated benzenes in water by headspace solid-phase microextraction. J Chromatog A 874:49–154

    Article  Google Scholar 

  6. Meharg AA, Wright J, Osborn D (2000) Chlorobenzenes in rivers draining industrial catchments. Sci Total Environ 251(252):243–253

    Article  Google Scholar 

  7. Beck AJ, Johnson DL, Jones KC (1996) The form and bioavailability of non-ionic organic chemicals in sewage sludge-amended agricultural soils. Sci Total Environ 185:125–149

    Article  CAS  Google Scholar 

  8. McPherson CA, Tang A, Chapman PM, Taylor LA, Gormican SJ (2002) Toxicity of 1,4-dichlorobenzene in sediment to juvenile polychaete worms. Mar Pollut Bull 44:1405–1414

    Article  CAS  Google Scholar 

  9. Juang DE, Yuan CS, Hsueh SC, Chiou LJ (2009) Distribution of volatile organic compounds around a polluted river. Int J Environ Sci Technol 6(1):91–104

    Article  CAS  Google Scholar 

  10. Van Wezel AP, Opperhuizen A (1995) Thermodynamics of partitioning of a series of chlorobenzenes to fish storage lipids, in comparison to partitioning to phospholipids. Chemosphere 31:3605–3615

    Article  Google Scholar 

  11. Monferrán MV, Cortina PR, Santiago AN, Wunderlin DA (2009) Distribution of dichlorobenzenes in sediment and water of Suquía River basin (Córdoba-Argentina). Int J Environ Health 3:363–378

    Article  Google Scholar 

  12. Malcolm HM, Howe PD, Dobson S (2004) Chlorobenzenes other than hexachlorobenzene: environmental aspects. World Health Organization, Concise International Chemical Assessment Document 60, http://whqlibdoc.who.int/publications/2004/924153060X.pdf

  13. Gomez Belichon JI, Grimalt JO, Albaiges J (1991) Volatile organic compounds in two polluted rivers in Barcelona (Catalonia, Spain). Water Res 25:577–589

    Article  Google Scholar 

  14. Fathepure BZ, Tiedje JM, Boyd SA (1988) Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl Environ Microb 54:327–330

    CAS  Google Scholar 

  15. Monferrán MV, Echenique JR, Wunderlin DA (2005) Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere 61:98–106

    Article  Google Scholar 

  16. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharm 203:201–218

    Article  CAS  Google Scholar 

  17. Nishiwaki-Matsushina R, Oht T, Nishiwaki S, Suganuma M, Yoszawa S, Kohyama K, Ishikaawa Y, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Canc Res Clin Oncol 118:420–424

    Article  Google Scholar 

  18. Sivonen K, Kononen K, Carmichae WW, Dahlem AM, Rinehart KL, Kiviranta J, Niemela SI (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic sea and structure of the toxin. Appl Environ Microbiol 55(8):1990–1995

    CAS  Google Scholar 

  19. Rastogi RP, Sinha RP, Incharoensakdi A (2014) The cyanotoxin-microcystins: current overview. Rev Environ Sci Biotechnol 13:215–249

    Article  CAS  Google Scholar 

  20. Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem 25:72–86

    Article  CAS  Google Scholar 

  21. Magalhäes VF, Soares RM, Azevedo SMFO (2001) Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39:1077–1085

    Article  Google Scholar 

  22. Quiblier C, Wood S, Echenique-Subiabre I, Heath M, Villeneuve A, Humbert J-F (2013) A review of current knowledge on toxic benthic freshwater cyanobacteria-Ecology, toxin production and risk management. Water Res 47:5464–5479

    Article  Google Scholar 

  23. Scarafia ME, Agnese AM, Cabrera JL (1995) Microcystis aeruginosa: behavior and toxic features in San Roque Dam (Argentina). Natural Toxins 3:75–77

    Article  CAS  Google Scholar 

  24. Pizzolón L, Tracanna B, Silva H, Prósperi C, Fabricius ALM, Emiliani MOG, Otaegui AV, Amalfi M, Labollita H, Santinelli N, Sastre V (1997) Inventario de ambientes dulceacuícolas de la Argentina con riesgo de envenenamiento por cianobacterias (toxic cyanobacterial blooms in Argentinean freshwaters). Ingeniería Sanitaria Ambiental 33:26–34

    Google Scholar 

  25. Brandalise MV, Nadal F, Rodriguez MI, Larrosa N, Ruiz M, Halac S, Olivera P, Licera C (2007) Índice de Calidad de Agua para uso Recreativo en Ambientes con Cianobacterias. http://www.ina.gov.ar/pdf/ifrrhh/02_007_Brandalise.pdf

  26. Amé MV, Díaz MP, Wunderlin DA (2003) Occurrence of toxic cyanobacterial blooms in San Roque Reservoir (Córdoba–Argentina): a field and Chemometric study. Environm Toxicol 18:192–201

    Article  Google Scholar 

  27. Ruibal Conti AL, Reguerira M, Guerrero JM (2005) Levels of microcystins in two reservoirs used for water supply and recreation: differences in the implementation of safe levels. Environ Toxicol 20:263–269

    Article  Google Scholar 

  28. World and Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva, Switzerland, p 564

    Google Scholar 

  29. Galanti LN, Amé MV, Wunderlin DA (2013) Accumulation and detoxification dynamic of cyanotoxins in the freshwater shrimp Palaemonetes argentinus. Harmful Algae 27:88–93

    Article  CAS  Google Scholar 

  30. Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in the water. E & FN Spon, London pp 113–153

    Google Scholar 

  31. Mazur H, Plinski M (2003) Nodularia spumigena blooms and the occurrence of hepatotoxin in the Gulf of Gdansk. Oceanologia 45(1):305–316

    Google Scholar 

  32. Henriksen P (2005) Estimating nodularin, content of cyanobacterial blooms from abundance of Nodularia spumigena and its characteristic pigments – a case study from the Baltic entrance area. Harmful Algae 4:167–178

    Article  CAS  Google Scholar 

  33. Dörr FA, Pinto E, Soares RM, de Feliciano Olivera e Azevedo SM (2010) Microcystins in South American aquatic ecosystems: occurrence, toxicity and toxicological assay. Toxicon 56:1247–1256

    Article  Google Scholar 

  34. Ruiz M, Galanti L, Ruibal AL, Rodriguez MI, Wunderlin DA, Amé MV (2013) First report of microcystins and anatoxin-a co-occurrence in San Roque Reservoir (Córdoba, Argentina). Water Air Soil Pollut 224:1593

    Article  Google Scholar 

  35. Vasconcelos V, Aliveira S, Oliva Teles F (2001) Impact of a toxic and non-toxic strain of Microcystis aeruginosa on the crayfish Procambarus clarkii. Toxicon 39:1462–1470

    Article  Google Scholar 

  36. Cámara de Sanidad Agropecuaria y Fertilizantes (CASAFE) (2013) http://www.casafe.org/

  37. Sistema integrado de información agropecuaria (SIIA) (2013) http://www.siia.gov.ar/

  38. Cámara de Sanidad Agropecuaria y Fertilizantes (CASAFE) (2011) http://www.casafe.org/

  39. Bonansea RI, Wunderlin DA, Amé MV (2012) Determinación de pesticidas en sedimentos del río Suquía (Córdoba, Argentina) usando microextracción en fase sólida (HS-SPME) acoplada a GC-MS. IV Congreso Argentino de la Sociedad de Toxicología y Química Ambiental (SETAC). Buenos Aires, p 51

    Google Scholar 

  40. Bonansea RI, Amé MV, Wunderlin DA (2013) Determination of priority pesticides in water samples combining SPE and SPME coupled to GC/MS. A case study: Suquía River basin (Argentina). Chemosphere 90:1860–1869

    Article  CAS  Google Scholar 

  41. Bonansea RI (2015) Evaluación de Plaguicidas en un ambiente acuatico contaminado, su acumulación en biota y aplicación de Biomarcadores para su detección. PhD. Thesis, Universidad Nacional de Córdoba, Córdoba-Argentina

    Google Scholar 

  42. Grunewald K, Schmidt W, Unger C, Hanschmann G (2001) Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany). J Plant Nutr Soil Sci 164:65–70

    Article  CAS  Google Scholar 

  43. Annett R, Habibi HR, Hontela A (2014) Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 34:458–479

    Article  CAS  Google Scholar 

  44. Wauchope RD, Buttler TM, Hornsby AG (1992) Augustijn beckers PWM. The SCS ARS CES pesticide properties database for environmental decision making. Rev Environ Contam Toxicol 123:1–155

    CAS  Google Scholar 

  45. Mugni H, Ronco A, Bonetto C (2011) Insecticide toxicity to Hyalella curvispina in runoff and stream water within a soybean farm (Buenos Aires, Argentina). Ecotoxicol Environ Saf 74:350–354

    Article  CAS  Google Scholar 

  46. Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, Van Der Kraak GJ (2008) Effects of Atrazine on fish, amphibians, and aquatic reptiles: a critical review. Crit Rev Toxicol 38:721–772

    Article  Google Scholar 

  47. Leonard AW, Hyne RV, Lim RP, Pablo F, Van den Brink PJ (2000) Riverine endosulfan concentrations in the Namoi River, Australia: link to cotton field runoff and macroinvertebrate population densities. Environ Toxicol Chem 19:1540–1551

    Article  CAS  Google Scholar 

  48. Lengyel Z, Földényi R (2003) Acetochlor as a soil pollutant. Environ Sci Pollut Res 10:13–18

    Article  CAS  Google Scholar 

  49. EXTOXNET (1996) Extension toxicology network pesticide information. http://ace.ace.orst.edu/info/extoxnet

  50. Navarro A, Tauler R, Lacorte S, Barceló D (2010) Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J Hydrol 383:18–29

    Article  CAS  Google Scholar 

  51. Feo ML, Ginebreda A, Eljarrat E, Barceló D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162

    Article  CAS  Google Scholar 

  52. Kuranchie-Mensah H, Atiemo SM, Palm LMND, Blankson-Arthur S, Tutu AO, Fosu P (2012) Determination of organochlorine pesticide residue in sediment and water from the Densu river basin, Ghana. Chemosphere 86:286–292

    Article  CAS  Google Scholar 

  53. Gómez MJ, Herrera S, Solé D, García-Calvo E, Fernández-Alba AR (2012) Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution. Sci Total Environ 420:134–145

    Article  Google Scholar 

  54. Jergentz S, Mugni H, Bonetto C, Schulz R (2005) Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere 61:817–826

    Article  CAS  Google Scholar 

  55. Marino D, Ronco A (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75:820–826

    Article  CAS  Google Scholar 

  56. Gonzalez M, Miglioranza KSB, Shimabukuro VM, Londoño OMQ, Martinez DE, Aizpún JE, Moreno VJ (2012) Surface and groundwater pollution by organochlorine compounds in a typical soybean system from the south Pampa, Argentina. Environ Earth Sci 65:481–491

    Article  CAS  Google Scholar 

  57. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in North Pampasic Region of Argentina. Environ Pollut 156:61–66

    Article  CAS  Google Scholar 

  58. Aparicio VC, DeGerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93:1866–1873

    Article  CAS  Google Scholar 

  59. Canadian Council of Ministers of the Environment (CCME) (2002) Canadian water quality guidelines for the protection of aquatic life. In: Canadian environmental quality (1999) Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  60. Subsecretaria de Recursos Hídricos de la Nación, República Argentina (SSRH) (2003) http://www.hidricosargentina.gov.ar/NivelCalidad1.html

  61. UNEP (2011) Stockolm Convention. The 9 New POPs under the Stockholm Convention. http://chm.pops.int/Programmes/NewPOPs/The9newPOPs/tabid/672/language/en-US/Default.aspx

  62. Loganathan BG, Kannan K (1994) Global organochlorine contamination trends: an overview. Ambio 23:187–191

    Google Scholar 

  63. ANMAT (2011) Disposición 617/11. http://www.anmat.gov.ar/webanmat/legislacion/medicamentos/Disposicion_617-2011.pdf

  64. INA (2005) Desarrollos de niveles guia nacionales de calidad de agua ambiente correspondientes a lindano http://www.pnuma.org/agua-miaac/CODIA%20CALIDAD%20DE%20LAS%20AGUAS/MATERIAL%20ADICIONAL/PONENCIAS/PONENTES/Tema%205%20Niveles%20Guias%20Calidad%20de%20Aguas/NIVELES%20GUIA/4%20-%20Desarrollos/lindano.pdf

  65. Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:1–7

    Article  Google Scholar 

  66. Pal A, Gin KYH, Lin AYC, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Article  CAS  Google Scholar 

  67. Fent K, Weston A, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquatic Toxicol 76:122–159

    Article  CAS  Google Scholar 

  68. Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants conception of a database and first results. Environ Pollut 157:1721–1726

    Article  Google Scholar 

  69. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  70. Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201

    Article  CAS  Google Scholar 

  71. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, DeLeo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DGJ, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Smith RM, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Kraak GVD (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspectives 120:1221–1229

    Article  Google Scholar 

  72. National Institute of Statistics and Censuses; Instituto Nacional de Estadística y Censos (NISC) (2013) Ministerio de Economia y Finanzas Públicas. República Argentina. http://www.indec.mecon.ar. Accessed June 2013

  73. Elorriaga Y, Marino DJ, Carriquiriborde P, Ronco AE (2013) Screening of pharmaceuticals in surface water bodies of the Pampas region of Argentina. Int J Environ Health 6:330–339

    Article  CAS  Google Scholar 

  74. Garcia SN, Foster M, Constantine L, Huggett DB (2012) Field and laboratory fish tissue accumulation of the anti-convulsant drug carbamazepine. Ecotoxicol Environ Saf 84:207–211

    Article  CAS  Google Scholar 

  75. Mancini C (2012) Impact of Discharge of Wastewater Treatment Plant in Suquía River Basin. Technical report. Centro de Tecnología de Química Industrial. Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba

    Google Scholar 

  76. Valdés ME, Amé MV, Bistoni MDLA, Wunderlin DA (2014) Occurrence and bioaccumulation of pharmaceuticals in a fish species inhabiting the Suquía River basin (Córdoba, Argentina). Sci Total Environ 472:389–396

    Article  Google Scholar 

  77. Wunderlin DA, Díaz M del P, Amé MV, Pesce SF, Hued AC, Bistoni MDLÁ (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River basin (Córdoba-Argentina). Water Res 35:2881–94

    Google Scholar 

  78. Monferrán MV, Galanti LN, Bonansea RI, Amé MV, Wunderlin DA (2011) Integrated survey of water pollution in the Suquía River basin (Córdoba, Argentina). J Environ Monit 13:398–409

    Article  Google Scholar 

  79. Merlo C, Abril A, Amé MV, Argüello GA, Carreras HA, Chiappero MS, Wannaz E, Galanti LN, Monferrán MV, González CM, Solís VM (2011) Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs. Sci Total Environ 409:5034–5045

    Article  CAS  Google Scholar 

  80. Maggioni T, Hued AC, Monferrán MV, Bonansea RI, Galanti LN, Amé MV (2012) Bioindicators and biomarkers of environmental pollution in the middle-lower basin of the Suquía River (Córdoba, Argentina). Arch Environ Contam Toxicol 63:337–353

    Article  CAS  Google Scholar 

  81. Elorriaga Y, Marino DJ, Carriquiriborde P, Ronco AE (2013) Human pharmaceuticals in wastewaters from urbanized areas of Argentina. Bull Environ Contam Toxicol 90(4):397–400

    Article  CAS  Google Scholar 

  82. Yamamoto H, Nakamura Y, Moriguchi S, Nakamura Y, Honda Y, Tamura I, Hirata Y, Hayashi A, Sekizawa J (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Res 43:351–362

    Article  CAS  Google Scholar 

  83. Vieno NM, Härkki H, Tuhkanen T, Kronberg L (2007) Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol 41:5077–5084

    Article  CAS  Google Scholar 

  84. López-Serna R, Petrović M, Barceló D (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro river basin (NE Spain). Sci Total Environ 440:280–289

    Article  Google Scholar 

  85. Osorio V, Marcé R, Pérez S, Ginebreda A, Cortina JL, Barceló D (2012) Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions. Sci Total Environ 440:3–13

    Article  CAS  Google Scholar 

  86. Lei B, Huang S, Zhou Y, Wang D, Wang Z (2009) Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere 76:36–42

    Article  CAS  Google Scholar 

  87. Liu S, Ying GG, Zhao JL, Chen F, Yang B, Zhou LJ, Lai HJ (2011) Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1218:1367–1378

    Article  CAS  Google Scholar 

  88. Halling-Sorensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhoft HC, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36:357–393

    Article  CAS  Google Scholar 

  89. Brooks BW, Chambliss CK, Stanley JK, Ramirez A, Banks KE, Johnson RD, Lewis RJ (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24:464–469

    Article  CAS  Google Scholar 

  90. Chu S, Metcalfe CD (2007) Analysis of paroxetine, fluoxetine and norfluoxetine in fish tissues using pressurized liquid extraction, mixed mode solid phase extraction cleanup and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1163:112–118

    Article  CAS  Google Scholar 

  91. Ramirez AJ, Brain RA, Usenko S, Mottaleb MA, O´Donnell JG, Stahl LL, Wathen JB, Snyder BD, Pitt JL, Perez-Hurtado P, Dobbins LL, Brooks BW, Chambliss CK (2009) Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. Environ Toxicol Chem 28:2587–2597

    Article  CAS  Google Scholar 

  92. Huerta B, Jakimska A, Gros M, Rodríguez-Mozaz S, Barceló D (2013) Analysis of multi-class pharmaceuticals in fish tissues by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1288:63–72

    Article  CAS  Google Scholar 

  93. Valdés ME (2015) Evaluación de Compuestos de Origen Farmacéutico en la cuenca del Río Suquía, Efectos tóxicos sobre la Ictiofauna. PhD. Thesis, Universidad Nacional de Córdoba, Córdoba-Argentina. Chapter 3 in collaboration with Huerta B, Rodriguez-Mozaz S, and Barcelò D. (Catalan Institute of Water Research-ICRA, Girona, Spain)

    Google Scholar 

  94. Hued AC, Bistoni MDLÁ (2005) Development and validation of a Biotic Index for evaluation of environmental quality in the central region of Argentina. Hydrobiologia 543:279–298

    Article  Google Scholar 

  95. Pyke GH (2005) A review of the biology of Gambusia affinis and G. holbrooki. Rev Fish Biol Fish 15:339–365

    Article  Google Scholar 

  96. Wang MJ, Mc Grath SP, Jones KC (1995) Chlorobenzenes in field soil with a history of multiple sewage sludge applications. Environ Sci Technol 29:356–362

    Article  Google Scholar 

  97. Ramirez AJ, Mottaleb MA, Brooks BW, Chambliss CK (2007) Analysis of pharmaceuticals in fish using liquid chromatography-tandem mass spectrometry. Anal Chem 79:3155–3163

    Article  CAS  Google Scholar 

  98. Schultz MM, Furlong ET, Kolpin DW, Werner SL, Schoenfuss HL, Barber LB, Blazer VS, Norris DO, Vajda AM (2010) Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environ Sci Technol 44:1918–1925

    Article  CAS  Google Scholar 

  99. Du B, Perez-Hurtado P, Brooks BW, Chambliss CK (2012) Evaluation of an isotope dilution liquid chromatography tandem mass spectrometry method for pharmaceuticals in fish. J Chromatogr A 1253:177–183

    Article  CAS  Google Scholar 

  100. Tanoue R, Nomiyama K, Nakamura H, Hayashi T, Kim JW, Isobe T, Shinohara R, Tanabe S (2014) Simultaneous determination of polar pharmaceuticals and personal care products in biological organs and tissues. J Chromatogr A 1355:193–205

    Article  CAS  Google Scholar 

  101. Fatta D, Nikolaou A, Achilleos A, Meric S (2007) Analytical methods for tracing pharmaceutical residues in water and wastewater. Trends Anal Chem 26(6):515–533

    Article  CAS  Google Scholar 

  102. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  103. Louch D, Motlagh S, Pawliszyn J (1992) Dynamics of organic compounds extraction from water using liquid-coated fused silica fibers. Anal Chem 64:1187–1199

    Article  CAS  Google Scholar 

  104. Santos FJ, Sarrión MN, Galceran MT (1997) Analysis of chlorobenzenes in soil by headspace solid-phase microextraction and gas chromatography-ion trap mass spectrometry. J Chromatogr A 771:181–189

    Article  CAS  Google Scholar 

  105. Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852

    Article  CAS  Google Scholar 

  106. Liu J, Hara K, Kashimura S, Hamanka T, Tomojiri S, Tanaka K (1999) Gas chromatographic-mass spectrometric analysis of dichlorobenzene isomers in human blood with headspace solid-phase microextraction. J Chromatogr B 731:217–221

    Article  CAS  Google Scholar 

  107. Richter BE, Jones BA, Ezzell JL, Porter NL (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68:1033–1039

    Article  CAS  Google Scholar 

  108. Petrovic M, Lacorte S, Viana P, Barcelo D (2002) Pressurized liquid extraction followed by liquid chromatography–mass spectrometry for the determination of alkylphenolic compounds in river sediment. J Chromatogr A 959:15–23

    Article  CAS  Google Scholar 

  109. Amé MV, Galanti LN, Menone M, Gerpe MS, Moreno VJ, Wunderlin DA (2010) Microcystin-LR, -RR, -YR and -LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae 9:66–73

    Article  Google Scholar 

  110. Gros M, Rodríguez-Mozaz S, Barceló D (2012) Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem. J Chromatogr A 1248:104–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Noemí Santiago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santiago, A.N., Bonansea, R.I., Valdés, M.E. (2015). Organic Pollutants in the Suquía River Basin. In: Wunderlin, D.A. (eds) The Suquía River Basin (Córdoba, Argentina). The Handbook of Environmental Chemistry, vol 62. Springer, Cham. https://doi.org/10.1007/698_2015_431

Download citation

Publish with us

Policies and ethics