Skip to main content

Bioavailability and Uptake of Organic Micropollutants During Crop Irrigation with Reclaimed Wastewater: Introduction to Current Issues and Research Needs

  • Chapter
  • First Online:
Wastewater Reuse and Current Challenges

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 44))

Abstract

Organic contaminants occurring in reclaimed water can be incorporated in soil, where they can interact with humic compounds or anthropogenic organic matter depending on their physicochemical properties. In the soil water, a fraction of these contaminants can be biodegraded, particularly in the rhizosphere, where the process is enhanced by root exudates. Another fraction can be uptaken by plants and translocated by xylem. Once incorporated in the plant, a fraction of the incorporated contaminant is metabolized, while the rest remains unaltered. Three stages can be distinguished in the metabolization process: (1) oxidation, (2) conjugation, and (3) accumulation in the vacuole or cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCFsv:

Bioconcentration factor soil-vegetal

BPA:

Bisphenol A

CYP450:

Cytochrome P450

DBP:

Disinfection by-product

DDT:

Dichlorodiphenyltrichloroethane

DEET:

N,N-Diethyl-meta-toluamide

DMPEA:

N,Nā€²-dimethylphenethylamine

DMPEA:

N,Nā€²-dimethylphenethylamine

DOC:

Dissolved organic carbon

D OW :

pH-adjusted octanol-water partition coefficient:

$$ {D}_{\mathrm{OW}}=\frac{K_{\mathrm{OW}}}{1+{10}^{\mathrm{pH}-\mathrm{p}{K}_a}} $$
DW:

Dry weight

fw:

Fresh weight

GSH:

Glutathione

GST:

Glutathione S-transferase

GT:

Glycosyltransferase

HC:

Hydrocarbon

HS:

Humic substance

K d,solid :

Soil sorption coefficient

K OC :

Sorption coefficient

K OW :

Octanol-water partition coefficient

MTBE:

Methyl tert-butyl ether

NADP+:

Nicotinamide adenine dinucleotide phosphate

NSAID:

Nonsteroidal anti-inflammatory drug

OP:

Organic pollutant

PAH:

Polycyclic aromatic hydrocarbon

PCB:

Polychlorinated biphenyl

PCCD:

Poly(1,4-cyclohexylidene cyclohexane-1,4-dicarboxylate)

PCDD:

Polychlorinated dibenzodioxin

PCDF:

Polychlorinated dibenzofuran

PPCPs:

Pharmaceuticals and personal care products

TSCF:

Transpiration stream concentration factor

UV:

Ultraviolet

Xenobiotic:

Exogenous organic compound

References

  1. Norton-BrandĆ£o D, Scherrenber SM, van Lier JB (2013) Reclamation of urban waters for irrigation purposes ā€“ a review of treatment technologies. J Environ Manag 122:85ā€“98

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Krasner SW, Westerhoff P, Chen B, Rittmann BE, Amy G (2009) Occurrence of disinfection by products in United States wastewater treatment plant effluents. Environ Sci Technol 43:8320ā€“8325

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Matamoros V, Mujeriego R, Bayona JM (2007) Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE spain. Water Res 41:3337ā€“3344

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636:178ā€“242

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. CalderĆ³n-Preciado D, Matamoros V, SavĆ© R, MuƱoz P, Biel C, Bayona JM (2013) Uptake of microcontaminants by crops irrigated with reclaimed water and groundwater under real field greenhouse conditions. Environ Sci Pollut Res 20(6):3629ā€“3638

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. CalderĆ³n-Preciado D, Matamoros V, Biel C, Save R, Bayona JM (2013) Foliar sorption of emerging and priority contaminants under controlled conditions. J Hazard Mater 260:176ā€“182

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Fatta-Kassinos D, Michael C (2013) Water reuse applications and contaminants of emerging concern. Environ Sci Pollut Res 20(6):3493ā€“3495

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Lohmann R, Macfarlane JC, Gschwend P (2005) Importance of carbon black to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. Environ Sci Technol 39:141ā€“148

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Thompson ML, Casey FXM, Khan E, Hakk H, Larsen GL, De Sutter T (2009) Occurrence and pathways of manure-borne 17Ī²estradiol in vadose zone water. Chemosphere 76:472ā€“479

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Zhou JL, Liu R, Wilding A, Hibberd A (2007) Sorption of selected endocrine disrupting chemicals to different aquatic colloids. Envrion Sci Technol 41:206ā€“213

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Ragle C, Engebretson RR, von Wandruszka R (1997) The sequestration of dissolved micropollutants by dissolved humic acids. Soil Sci 162:106ā€“114

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Wandruszka R, Ragle C, Engebretson RR (1997) The role of selected cations in the formation of pseudomicelles in aqueous humic acid. Talanta 44:805ā€“809

    ArticleĀ  Google ScholarĀ 

  13. Yates LM, Engebretson RR, Haakenson TJ, von Wandruszka R (1997) Immobilization of aqueous pyrene by dissolved humic acid. Anal Chim Acta 356:295ā€“300

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Steelink C (1985) Elemental characteristics of humic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment, and water. Wiley, New York, pp 457ā€“476

    Google ScholarĀ 

  15. Engebretson RR, Amos T, von Wandruszka R (1996) Quantitative approach to humic acid associations. Environ Sci Technol 30(3):990ā€“997

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Wershaw RL (1993) Model for humus in soils and sediments. Environ Sci Technol 27(5):814ā€“816

    ArticleĀ  Google ScholarĀ 

  17. Jardine PM, Weber NL, McCarthy JF (1989) Mechanisms of dissolved organic carbon adsorption on soil. Soil Sci Soc Am J 53:1378ā€“1385

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Murphy EM, Zachara JM, Smith SC (1990) Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ Sci Technol 24:1507ā€“1516

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Hlady V, Buijs J (1996) Protein adsorption on solid surfaces. Curr Opin Biotechnol 7:72ā€“77

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Wershaw RL, Pinckney DJ (1980) Isolation and characterization of clay-humic complexes. In: Baker RA (ed) Contaminants and sediments. Arbor Science, Ann Arbor, pp 207ā€“219

    Google ScholarĀ 

  21. Omoike A, Chorover J (2006) Adsorption to goethite of extracellular polymeric substances from bacillus subtilis. Geochim Cosmochim Acta 70:827ā€“838

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Wershaw RL (2004) Evaluation of conceptual models of natural organic matter (humus) from a consideration of the chemical and biochemical processes of humification. Scientific Investigations Report 2004ā€“5121. US Geological Survey, Reston

    Google ScholarĀ 

  23. Aufdenkampe A, Hedges J, Richey J, Krusche A, Llerena C (2001) Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments within the Amazon Basin. Limnol Oceanol 46:1921ā€“1935

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Tremblay L, Brenner R (2006) Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus. Geochim Cosmochim Acta 70:133ā€“146

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Thorn KA, Folan DW, MacCarthy P (1989) Characterization of the International Humic Substances Society Standard and reference fulvic and humic acids by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance spectrometry. Water Resources Investigations Report 89ā€“4196. US Geological Survey, Denver

    Google ScholarĀ 

  26. Song J, Peng P, Huang W (2002) Black carbon and kerogen in soils and sediments: 1. quantification and characterization. Environ Sci Technol 36:3960ā€“3967

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Weber WJ Jr, McGinley PM, Katz LE (1992) A distributed reactivity model for sorption by soils and sediments: 1. conceptual basis and equilibrium assessments. Environ Sci Technol 26:1955ā€“1962

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35(17):3397ā€“3406

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Kotyza J, Soudek P, Kafka Z, Vaněk T (2010) Phytoremediation of pharmaceuticalsā€“preliminary study, international. Int J Phytorem 12(3):306ā€“316

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Sandermann H, Scheel D, vdTrenk T (1984) Use of plant cell cultures to study the metabolism of environmental chemicals. Ecotoxicol Environ Saf 8:167ā€“182

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Herklotz PA, Gurung P, Heuvel BV, Kinney CHA (2010) Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 78:1416ā€“1421

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Wu X, Ernst F, Conkle JL, Gan J (2013) Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ Int 60:15ā€“22

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Noureddin MI, Furumoto T, Ishida Y, Fukui H (2004) Absorption and metabolism of bisphenol A, a possible endocrine disruptor, in the aquatic edible plant, water convolvulus (Ipomoea aquatica). Biosci Biotechnol Biochem 68(6):1398ā€“1402

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Dodgen LK, Li J, Parker D, Gan JJ (2013) Uptake and accumulation of four PPCP/EDCs in two leafy vegetables. Environ Pollut 182:150ā€“156

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Liu L, Liu C, Zheng J, Huang X, Wang Z, Liu Y, Zhu G (2013) Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands. Chemosphere 91:1088ā€“1093

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Holling CS, Bailey JL, Vanden Heuvel B, Kinney CA (2012) Uptake of human pharmaceuticals and personal care products by cabbage (Brassica campestris) from fortified and biosolids-amended soils. J Environ Monitor 14:3029ā€“3036

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Macherius A, Eggen T, Lorenz WG, Reemtsma T, Winkler U, Moeder M (2012) Uptake of galaxolide, tonalide, and triclosan by carrot, barley, and meadow fescue plants. J Agric Food Chem 60(32):7785ā€“7791

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Dettenmaier EM, Doucette WJ, Bugbee B (2009) Chemical hydrophobicity and uptake by plant roots. Environ Sci Technol 43:324ā€“329

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid polar trees. Environ Sci Technol 32(21):3379ā€“3385

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Aitchison EW, Kelley SL, Alvarez PJJ, Schnoor JL (2000) Phytoremediation of 1,4-dioxane by hybrid poplar trees. Water Environ Res 72(3):313ā€“321

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Rubin E, Ramaswami A (2001) The potential for phytoremediation of MTBE. Water Res 35(5):1348ā€“1353

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595ā€“624

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Inoue J, Chamberlain K, Bromilow RH (1998) Physicochemical factors affecting the uptake by roots and translocation to shoots of amine bases in barley. Pestic Sci 54:8ā€“21

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Trapp S (2000) Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767ā€“778

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630ā€“2636

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Gerhardt KE, Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20ā€“30

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Hartmann A, Lemanceau P, Prosser JI (2008) Multitrophic interactions in the rhizosphereā€“rhizosphere microbiology: at the interface of many disciplines and expertises. FEMS Microbiol Ecol 65:179

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Newman EI (1985) The rhizosphere: carbon sources and microbial populations. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific, Oxford, pp 107ā€“121

    Google ScholarĀ 

  49. Rao TP, Yano K, Iijima M, Yamauchi A, Tatsumi J (2002) Regulation of rhizosphere acidification by photosynthetic activity in cowpea (Vigna unguiculata L. Wal.) seedlings. Ann Bot 89:213ā€“220

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Al Nasir F, Batarseh MI (2008) Agricultural reuse of reclaimed water and uptake of organic compounds: pilot study at Mutah University wastewater treatment plant, Jordan. Chemosphere 72(8):1203ā€“1214

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Fantke P, Charles R, de Alencastro LF, Friedrich R, Jolliet O (2011) Plant uptake of pesticides and human health: dynamic modeling of residues in wheat and ingestion intake. Chemosphere 85(10):1639ā€“1647

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Anderson WC, Loehr RC, Smith BP (1999) Environmental availability in soils. United Book Press, Annapolis

    Google ScholarĀ 

  53. Hrudey SE, Chen WP, Rousseaux CG (1995) Bioavailability in environmental risk assessment. CRC, Boca Raton

    Google ScholarĀ 

  54. Gao Y, Ren L, Ling W, Gong S, Sun B, Zhang Y (2010) Desorption of phenanthrene and pyrene in soils by root exudates. Bioresour Technol 101:1159ā€“1165

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Ling W, Ren L, Gao Y, Zhu X, Sun B (2009) Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil. Soil Biol Biochem 41:2187ā€“2195

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP (2010) Uptake of pharmaceuticals and personal care products by soybean plants from soils irrigated with contaminated water. Environ Sci Technol 44:6157ā€“6161

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. Jones-Lepp TL, Sanchez CA, Moy T, Kazemi R (2010) Method development and application to determine potential plant uptake of antibiotics and other drugs in irrigated crop production systems. J Agric Food Chem 58(2):11568ā€“11573

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. CalderĆ³n-Preciado D, JimĆ©nez-Cartagena C, Matamoros V, Bayona JM (2011) Screening 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res 45:221ā€“231

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Zhang Q, Xu FX, Lambert KN, Riechers DE (2007) Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues. Proteomics 8:1261ā€“78

    ArticleĀ  CASĀ  Google ScholarĀ 

  60. Kreuz K, Tommasini R, Martinoia E (1996) Old enzymes for a new job: herbicide detoxification in plants. Plant Physiol 111:349ā€“353

    CASĀ  Google ScholarĀ 

  61. Schroll R, Bierling B, Cao G, Dƶfler U, Lahaniati M, Langenbach T, Scheunert I, Winkler R (1994) Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere 28(2):297ā€“303

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Field JA, Thurman EM (1996) Glutathione conjugation and contaminant transformation. Environ Sci Technol 30:1413ā€“1418

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643ā€“668

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Kvesitadze G, Gordeziani M, Khatisashvili G, Sadunishvili T, Ramsden JJ (2001) Some aspects of the enzymatic basis of phytoremediation. J Biol Phys Chem 1:49ā€“57

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification in higher plants. Basis of phytoremediation. Springer, Berlin

    Google ScholarĀ 

  66. Sandermann H, Diesperger H, Scheel D (1977) Metabolism of xenobiotics by plant cell cultures. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnical application. Springer, Berlin, pp 178ā€“196

    ChapterĀ  Google ScholarĀ 

  67. Sandermann H (1994) Higher plant metabolism of xenobiotics: the ā€œgreen liverā€ concept. Pharmacogenetics 4:225ā€“241

    ArticleĀ  CASĀ  Google ScholarĀ 

  68. Coleman JOD, Mechteld MA, Kalff B, Davies TGE (1997) Detoxification of xenobiotics in plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144ā€“151

    ArticleĀ  Google ScholarĀ 

  69. Schrƶder P, Collins C (2002) Conjugation enzymes involved in xenobiotic metabolism or organic xenobiotics in plants. Int J Phytoremediation 4:247ā€“265

    ArticleĀ  Google ScholarĀ 

  70. Edwards R, Dixon DP, Cummins I, Brazier-Hicks M, Skipsey M (2011) New perspectives on the metabolism and detoxification of synthetic compounds in plants. In: Schrƶder P, Collins CD (eds) Organic xenobiotics and plants: from mode of action to ecophysiology, plant ecophysiology , vol 8. Springer, Dordrecht, pp 125ā€“148

    ChapterĀ  Google ScholarĀ 

  71. Sandermann H (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17(2):82ā€“84

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Huber C, Bartha B, Harpaintner R, Schrƶder P (2009) Metabolism of acetaminophen (paracetamol) in plants-two independent pathways result in the formation of a glutathione and a glucose conjugate. Environ Sci Pollut Res Int 16(2):206ā€“13

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Cole DJ, Edwards R (2000) Secondary metabolism of agrochemicals in plants. In: Roberts TR (ed) Agrochemicals and plant protection. Wiley, Chichester, pp 107ā€“154

    Google ScholarĀ 

  74. Edwards R, Del Buono D, Fordham M, Skipsey M, Brazier M, Dixon D, Cummins I (2005) Differential induction of glutathione transferases and glucosyltransferases in wheat, maize and Arabidopsis thaliana by herbicide safeners. Z Naturforsch 60:307ā€“316

    CASĀ  Google ScholarĀ 

  75. Hatzios KK (1997) Regulation of enzymatic systems detoxifying xenobiotics in plants: a brief overview and directions for future research. In: Hatzios KK (ed) Regulation of enzymatic systems detoxifying xenobiotics in plants. Kluwer Academic Publishers, Dordrecht, pp 1ā€“5

    ChapterĀ  Google ScholarĀ 

  76. An J, Zhou Q, Sun F, Zhang L (2009) Ecotoxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.). J Hazard Mater 169:751ā€“757

    ArticleĀ  CASĀ  Google ScholarĀ 

  77. Bartha B, Huber C, Harpaintner R, Schrƶder P (2010) Effects of acetaminophen in Brassica juncea L. Czern.: investigation of uptake, translocation, detoxification, and the induced defense pathways. Environ Sci Pollut Res Int 17(9):1553ā€“1562

    ArticleĀ  CASĀ  Google ScholarĀ 

  78. Chai W, Sakamaki H, Kitanaka S, Saito M, Horiuchi A (2003) Biodegradation of bisphenol A cultured cells of Caragana chamlagu. Biosci Biotechnol Biochem 67:218ā€“220

    ArticleĀ  CASĀ  Google ScholarĀ 

  79. Dordio AV, Belo M, Martins Teixeira D, Palace Carvalho AJ, Dias CMB, PicĆ³ Y, Pinto AP (2011) Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Bioresour Technol 102:7827ā€“7834

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Huber C, Bartha B, Schrƶder P (2012) Metabolism of diclofenac in plants ā€“ hydroxylation is followed by glucose conjugation. J Hazard Mater 243:250ā€“256

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Iori V, Pietrini F, Zacchini M (2012) Assessment of ibuprofen tolerance and removal capability in Populus nigra L. by in vitro culture. J Hazard Mater 229ā€“230:217ā€“223

    ArticleĀ  CASĀ  Google ScholarĀ 

  82. Matsui T, Nomura Y, Takano M, Imai S, Nakayama H, Miyasaka H, Okuhata H, Tanaka S, Matsuura H, Harada K, Bamba T, Hirata K, Kato K (2011) Molecular cloning and partial characterization of a peroxidase gene expressed in the roots of Portulaca oleracea cv., one potentially useful in the remediation of phenolic pollutants. Biosci Biotechnol Biochem 75:882ā€“890

    ArticleĀ  CASĀ  Google ScholarĀ 

  83. Schrƶder P, Juuti S, Roy S, Sandermann H, Sutinen S (1997) Exposure to chlorinated acetic acids: responses of peroxidase and glutathione S-transferase activity in pine needles. Environ Sci Pollut Res Int 4(3):163ā€“171

    ArticleĀ  Google ScholarĀ 

  84. Watanabe I, Harada K, Matsui T, Miyasaka H, Okuhata H, Tanaka S, Nakayama H, Kato K, Bamba T, Hirata K (2012) Characterization of bisphenol A metabolites produced by Portulaca oleracea cv. using liquid chromatography coupled with tandem mass spectrometry. Biosci Biotechnol Biochem 76:1015ā€“1017

    ArticleĀ  CASĀ  Google ScholarĀ 

  85. Wen B, Liu Y, Wang P, Wu T, Zhang S, Shan X, Lu J (2012) Toxic effects of chlortetracycline on maize growth, reactive oxygen species generation and the antioxidant response. J Environ Sci 4(6):1099ā€“1105

    ArticleĀ  CASĀ  Google ScholarĀ 

  86. Eapen S, Singh S, D'Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442ā€“445

    ArticleĀ  CASĀ  Google ScholarĀ 

  87. Ferhatoglu Y, Avdiushko S, Barrett M (2005) The basis for the safening of clomazone by phorate insecticide in cotton and inhibitors of cytochrome P450s. Pestic Biochem Physiol 81:59ā€“70

    ArticleĀ  CASĀ  Google ScholarĀ 

  88. Cole DJ, Owen WJ (1987) Influence of monooxygenase inhibitors on the metabolism of the herbicides chlortoluron and metolachlor in cell-suspension cultures. Plant Sci 50:13ā€“20

    ArticleĀ  CASĀ  Google ScholarĀ 

  89. Padilla IMG, Burgos L (2010) Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Rep 29:1203ā€“1213

    ArticleĀ  CASĀ  Google ScholarĀ 

  90. Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629ā€“637

    ArticleĀ  CASĀ  Google ScholarĀ 

  91. Guengerich FP (2008) Cytochrome P-450 and chemical toxicology. Chem Res Toxicol 21(1):70ā€“83

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151ā€“62

    ArticleĀ  CASĀ  Google ScholarĀ 

  93. Day JA, Saunders FM (2004) Glycosidation of chlorophenols by Lemna minor. Environ Toxicol Chem 23:613ā€“620

    ArticleĀ  CASĀ  Google ScholarĀ 

  94. Hamada H, Tomi R, Asada Y, Furuya T (2002) Phytoremediation of bisphenol A by cultured suspension cells of Eucalyptus perriniana-regioselective hydroxylation and glycosylation. Tetrahedron Lett 43:4087ā€“4089

    ArticleĀ  CASĀ  Google ScholarĀ 

  95. Lao S, Loutre C, Brazier M, Coleman JOD, Cole DJ, Edwards R, Theodoulou FL (2003) 3,4-dichloroaniline is detoxified and exported via different pathways in Arabidopsis and soybean. Phytochemistry 63:653ā€“661

    ArticleĀ  CASĀ  Google ScholarĀ 

  96. Nakajima N, Ohshima Y, Serizawa S, Kouda T, Edmonds JS, Shiraishi F, Aono M, Kubo A, Tamaoki M, Saji H, Morita M (2002) Processing of bisphenol A by plant tissues: glucosylation by cultured BY-2 cells and glucosylation/translocation by plants of Nicotiana tabacum. Plant Cell Physiol 43:1036ā€“1042

    ArticleĀ  CASĀ  Google ScholarĀ 

  97. Rezek J, Macek T, Doubsky J, Mackova M (2012) Metabolites of 2,2ā€²-dichlorobiphenyl and 2,6-dichlorobiphenyl in hairy root culture of black nightshade Solanum nigrum SNC-9O. Chemosphere 89(4):383ā€“388

    ArticleĀ  CASĀ  Google ScholarĀ 

  98. Shang TQ, Doty SL, Wilson AM, Howald WN, Gordon MP (2001) Trichloroethylene oxidative metabolism in plants: the trichloroethanol pathway. Phytochemistry 58:1055ā€“1065

    ArticleĀ  CASĀ  Google ScholarĀ 

  99. Burken JG (2003) Uptake and metabolism of organic compounds: green liver model. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation transformation and control of contaminants. Wiley-Interscience, Hoboken, pp 59ā€“84

    Google ScholarĀ 

  100. Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143ā€“166

    ArticleĀ  CASĀ  Google ScholarĀ 

  101. Macek T, MackovĆ” M, KĆ”s J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23ā€“34

    ArticleĀ  CASĀ  Google ScholarĀ 

  102. Timmermann KP (1989) Molecular characterisation of corn glutathione-S-transferase isoenzymes involved in herbicide detoxification. Physiol Plantarum 77:465ā€“471

    ArticleĀ  Google ScholarĀ 

  103. Pflugmacher S, Schrƶder P, Sandermann H (2000) Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry 54:267ā€“273

    ArticleĀ  CASĀ  Google ScholarĀ 

  104. Shimabukuro RH, Swanson HR, Walsh WC (1970) Glutathione conjugation: atrazine detoxication mechanism in corn. Plant Physiol 46(1):103ā€“107

    ArticleĀ  CASĀ  Google ScholarĀ 

  105. Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3):3004.1ā€“3004.10

    ArticleĀ  Google ScholarĀ 

  106. Edwards RJ, Owen WJ (1986) Comparison of glutathione S-transferases of Zea mays responsible for herbicide detoxification in plants and suspension-cultured cells. Planta 169:208ā€“215

    ArticleĀ  CASĀ  Google ScholarĀ 

  107. Yu GB, Zhang Y, Ahammed GJ, Xia XJ, Mao WH, Shi K (2013) Glutathione biosynthesis and regeneration play an important role in the metabolism of chlorothalonil in tomato. Chemosphere 90:2563ā€“2570

    ArticleĀ  CASĀ  Google ScholarĀ 

  108. Schmidt B, Schuphan I (2002) Metabolism of the environmental estrogen bisphenol A by plant cell suspension cultures. Chemosphere 49:51ā€“59

    ArticleĀ  CASĀ  Google ScholarĀ 

  109. Nakajima N, Oshima Y, Edmonds JS, Morita M (2004) Glycosylation of bisphenol A by tobacco BY-2 cells. Phytochemistry 65(10):1383ā€“1387

    ArticleĀ  CASĀ  Google ScholarĀ 

  110. Loffredo E, Gattullo E, Traversa A, Senesi N (2010) Potential of various herbaceous species to remove the endocrine disruptor bisphenol A from aqueous media. Chemosphere 80:1274ā€“1280

    ArticleĀ  CASĀ  Google ScholarĀ 

  111. Dogan M, Korkunc M, Yumrutas O (2012) Effects of bisphenol A and tetrabromobisphenol A on bread and durum wheat varieties. Ekoloji 21(85):114ā€“122

    ArticleĀ  CASĀ  Google ScholarĀ 

  112. Sun H, Wang LH, Zhou Q, Huang XH (2013) Effects of bisphenol A on ammonium assimilation in soybean roots. Environ Sci Pollut Res 20:848ā€“8490

    ArticleĀ  CASĀ  Google ScholarĀ 

  113. Li Y, Zhou Q, Li F, Liu X, Luo Y (2008) Effects of tetrabromobisphenol A as an emerging pollutant on wheat (Triticum aestivum) at biochemical level. Chemosphere 74:119ā€“124

    ArticleĀ  CASĀ  Google ScholarĀ 

  114. Scandalios JG (2001) Molecular responses to oxidation stress. In: Hawkesfor MJ, Bucher P (eds) Molecular analysis of plant adaptation to the environment. Springer, Dordrecht, pp 181ā€“208

    ChapterĀ  Google ScholarĀ 

  115. MackovĆ” M, Dowling DN, Macek T (eds) (2006) Phytoremediation and rhizoremediation. In: Focus on biotechnology, vol 9A. Springer, Dordrecht

    Google ScholarĀ 

  116. Martinoia E, Grill E, Tommaslnl R, Kreuz K, Amrheln N (1993) ATP dependent glutathione S-conjugate ā€˜exportā€™ pump in the vacuolar membrane of plants. Nature 364:247ā€“249

    ArticleĀ  CASĀ  Google ScholarĀ 

  117. Schrƶder P, Scheer CE, Diekmann F, Stampfl A (2007) How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare). Environ Sci Pollut Res 14(2):114ā€“122

    ArticleĀ  Google ScholarĀ 

  118. Klein M, Martinoia E, Hoffmann-Thoma G, Weissenbƶck G (2000) A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. Plant J 21(3):289ā€“304

    ArticleĀ  CASĀ  Google ScholarĀ 

  119. Klein M, Martinoia E, Weissenbƶck G (1998) Directly energized uptake of Ī²-estradiol 17-(Ī²- d-glucuronide) in plant vacuoles is strongly stimulated by glutathione conjugates. J Biol Chem 273(262):270

    Google ScholarĀ 

  120. Sun H, Wang LH, Zhou Q, Huang XH (2013) Effects of bisphenol A on growth and nitrogen nutrition of roots of soybean seedlings. Environ Toxicol Chem 32(1):174ā€“180

    ArticleĀ  CASĀ  Google ScholarĀ 

  121. Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233ā€“1244

    ArticleĀ  CASĀ  Google ScholarĀ 

  122. Yang X-B, Ying G-G, Peng P-A, Wang L, Zhao JL, Zhang LJ, Yuan P, He HP (2010) Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58:7915ā€“7921

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

Financial support was obtained from the Spanish Ministry of Economy and Competitiveness (CGL2011-24844).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Bayona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

CaƱameras, N., Comas, J., Bayona, J.M. (2015). Bioavailability and Uptake of Organic Micropollutants During Crop Irrigation with Reclaimed Wastewater: Introduction to Current Issues and Research Needs. In: Fatta-Kassinos, D., Dionysiou, D., KĆ¼mmerer, K. (eds) Wastewater Reuse and Current Challenges . The Handbook of Environmental Chemistry, vol 44. Springer, Cham. https://doi.org/10.1007/698_2015_412

Download citation

Publish with us

Policies and ethics