Skip to main content

Trend Assessment for Groundwater Pollutants: A Brief Review and Some Remarks

  • Chapter
  • First Online:
Experiences from Ground, Coastal and Transitional Water Quality Monitoring

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 43))

Abstract

Groundwater is a valuable natural resource that needs to be assessed and protected. The European Union (EU) adopted new water legislation that includes the Water Framework Directive (WFD) and the Groundwater Daughter Directive (GWD). Both require the identification of sustained increasing pollution trends and their reversal. This is the second pillar of the WFD: such trends have to be identified for any pollutants that result in groundwater being characterized as at risk of not meeting the environmental objectives. Measuring these trends is necessary to determine and understand whether changes in land use, fertilizer application, pollution history, or climate change are affecting groundwater quality. However, in many cases, groundwater data series may not meet minimum requirements for classical statistical procedures employed in trend assessment: among other obstacles, data may be sparse, with missing or extreme values, censored data, seasonal effects, and autocorrelation. The aim of this chapter is to present and review several statistical methodologies that have been proposed and applied in recent years to deal with groundwater trend assessment, discussing the relative advantages and disadvantages of each one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EC (2008) European Commission Groundwater Protection in Europe. The new groundwater directive-consolidating the EU regulatory framework, vol 35. doi: 10.2779/84304

    Google Scholar 

  2. Grath J, Ward R, Scheidleder A, Quevauviller P (2009) General introduction: objectives of groundwater assessment and monitoring. In: Quevauviller P, Fouillac A, Gralh J, Ward R (eds) Groundwater monitoring. Wiley, Chichester, pp 3–22

    Google Scholar 

  3. EU (2000) European Parliament and Council Directive 2000/60/EC of 23 October 2000 establishing a framework for Community action in the field of water policy (OJ L 327, 22/12/2000, p. 1) as amended by European Parliament and Council Decision 2455/2001/EC (OJ L 331, 15/12/2001, p. 1), European Commission, Brussels

    Google Scholar 

  4. EU (2006) European Parliament and Council of the European Union European Parliament and Council Directive of 12 December 2006 on the protection of groundwater against pollution and deterioration (2006/118/EC). Offi J Eur Commun L372/19

    Google Scholar 

  5. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18:107. doi:10.1029/WR018i001p00107

    Article  Google Scholar 

  6. Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20:727

    Article  Google Scholar 

  7. Broers HP, Visser A, Chilton JP, Stuart ME (2009) Assessing and aggregating trends in groundwater quality. In: Quevauviller P, Fouillac A, Gralh J, Ward R (eds) Groundwater monitoring. Wiley, Chichester, pp 189–206

    Chapter  Google Scholar 

  8. Grath J, Scheidleder A, Uhlig S et al (2001) The EU water framework directive: statistical aspects of the identification of groundwater pollution trends, and aggregation of monitoring results. Final Report. 63

    Google Scholar 

  9. EC (2009) European Commission Environment Common implementation strategy guidance for the water framework strategy (2000/60/2006). Guidance Document No 18. Guidance on groundwater status and trend assessment, vol 82

    Google Scholar 

  10. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/

  11. Lettenmaier DP, Conquest LL, Hughes JP (1982) Routine streams and rivers water quality trend monitoring review. Charles W. Harris Hydraulics Laboratory, Technical Report No. 75. University of Washington

    Google Scholar 

  12. Van Belle G, Hughes JP (1984) Nonparametric tests for trend in water quality. Water Resour Res 20:127–136

    Article  Google Scholar 

  13. Helsel DR (1987) Advantages of nonparametric procedures for analysis of water quality data. Hydrol Sci J 32:179–190. doi:10.1080/02626668709491176

    Article  Google Scholar 

  14. Lettenmaier DP (1988) Multivariate nonparametric tests for trend in water quality. Water Resour Bull 24:505–512. doi:10.1111/j.1752-1688.1988.tb00900.x

    Article  CAS  Google Scholar 

  15. Hirsch RM, Alexander RB, Smith RA (1991) Selection of methods for the detection and estimation of trends in water quality. Water Resour Res 27:803–813

    Article  Google Scholar 

  16. McLeod AI, Hipel KW, Bodo BA (1991) Trend analysis methodology for water quality time series. Environmetrics 2:169–200. doi:10.1002/env.3770020205

    Article  Google Scholar 

  17. Esterby SR (1993) Trend analysis methods for environmental data. Environmetrics 4:459–481

    Article  Google Scholar 

  18. Esterby S (1996) Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrol Process 10:127–149

    Article  Google Scholar 

  19. Reckhow KH, Kepford K, Hicks WW (1993) Statistical methods for the analysis of lake water quality trends. Report 841-R-93-003

    Google Scholar 

  20. Loftis J (1996) Trends in groundwater quality. Hydrol Process 10:335–355

    Article  Google Scholar 

  21. Hess A, Iyer H, Malm W (2001) Linear trend analysis: a comparison of methods. Atmos Environ 35:5211–5222. doi:10.1016/S1352-2310(01)00342-9

    Article  CAS  Google Scholar 

  22. Helsel DR, Hirsch RM (2002) Trend analysis. In: Statistical methods in water resources. Techniques of Water Resources Investigations, Book 4, chapter A3. U.S. Geological Survey, pp 323–355

    Google Scholar 

  23. Kundzewicz ZW, Robson AJ (2004) Change detection in hydrological records—a review of the methodology / Revue méthodologique de la détection de changementsdans les chroniqueshydrologiques. Hydrol Sci J 49:7–19. doi:10.1623/hysj.49.1.7.53993

    Article  Google Scholar 

  24. Helsel DR, Frans LM (2006) Regional Kendal test for trend. Environ Sci Technol 40(13):4066–4073

    Article  CAS  Google Scholar 

  25. Chang H (2008) Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res 42:3285–3304. doi:10.1016/j.watres.2008.04.006

    Article  CAS  Google Scholar 

  26. Visser A, Dubus I, Broers HP et al (2009) Comparison of methods for the detection and extrapolation of trends in groundwater quality. J Environ Monit 11:2030–2043. doi:10.1039/b905926a

    Article  CAS  Google Scholar 

  27. NNPSMP (2011) Statistical analysis for monotonic trends, Tech Notes 6. Office of Water US Environmental Protection Agency

    Google Scholar 

  28. Machiwal D, Jha MK (2012) Trend and homogeneity in subsurface hydrologic variables: case study in a hard-rock aquifer of western India. In: Machiwal D, Jha MK (eds) Hydrologic time series analysis: theory and practice. Springer, Netherlands, pp 165–180. doi:10.1007/978-94-007-1861-6_8

    Chapter  Google Scholar 

  29. Wahlin K, Grimvall A (2010) Roadmap for assessing regional trends in groundwater quality. Environ Monit Assess 165:217–231. doi:10.1007/s10661-009-0940-7

    Article  CAS  Google Scholar 

  30. Devreker D, Lefebvre A (2014) TTAinterfaceTrendAnalysis: an R GUI for routine temporal trend analysis and diagnostics. J Oceanogr Res Data 7:1

    Google Scholar 

  31. Huber PJ (1981) Robust statistics. Wiley, New York. doi:10.1002/0470010940

    Book  Google Scholar 

  32. Hampel FR, Rousseuw PJ, Ronchetti E, Stahel W (1986) Robust statistic: the approach based on influence functions. Wiley, New York

    Google Scholar 

  33. Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York

    Book  Google Scholar 

  34. Marazzi A (1993) Algorithms, routines, and S functions for robust statistics. CRC, New York

    Google Scholar 

  35. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. doi:10.2307/2685660

    Book  Google Scholar 

  36. Bellio R, Ventura L (2005) An introduction to robust estimation with R functions. Proceedings of 1st International Work, pp 1–57

    Google Scholar 

  37. Huber PJ (1973) Robust regression: asymptotics, conjectures and Monte Carlo. Ann Stat 1:799–821

    Article  Google Scholar 

  38. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  39. Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting. J Econ 37:87–114

    Article  Google Scholar 

  40. Cleveland WS, Grosse E (1991) Computational methods for local regression. Stat Comput 1:47–62

    Article  Google Scholar 

  41. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610. doi:10.2307/2289282

    Article  Google Scholar 

  42. Hurvich CM, Simonoff JS, Tsai CL (1998) Smoothing parameter selection in nonparametric regression using an improved Akaike Information Criterion. J R Stat Soc Ser B 60:271–293

    Article  Google Scholar 

  43. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) Second international symposium on information theory, Tsahkadsor, Armenia, USSR, September 2–8, 1971, AkadémiaiKiadó, Budapest, pp 267–281

    Google Scholar 

  44. Akaike H (1974) A new look at the statistical model identification. Autom Contr IEEE Trans 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  45. Wen F, Chen X (2006) Evaluation of the impact of groundwater irrigation on streamflow in Nebraska. J Hydrol 327:603–617. doi:10.1016/j.jhydrol.2005.12.016

    Article  Google Scholar 

  46. Hirsch RM (1988) Statistical methods and sampling design for estimating step trends in surface water quality. Water Resour Bull 24:493–503. doi:10.1111/j.1752-1688.1988.tb00899.x

    Article  CAS  Google Scholar 

  47. Hirsch RM, Gilroy EJ (1985) Detectability of step trends in the rate of atmospheric deposition of sulfate. Water Resour Bull 21:773–784. doi:10.1111/j.1752-1688.1985.tb00171.x

    Article  CAS  Google Scholar 

  48. Kundzewicz ZW, Robson AJ (eds) (2000) Detecting trend and other changes in hydrological data. World Climate Programme—Water, World Climate Programme Data and Monitoring, WCDMP-45, WMO/TD no. 1013. World Meteorological Organization, Geneva, Switzerland

    Google Scholar 

  49. Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York. doi:10.1002/0471725315

    Book  Google Scholar 

  50. Toms JD, Lesperance ML (2003) Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034–2041

    Article  Google Scholar 

  51. Steele TD, Gilroy EJ, Hawkinson RO (1974) Techniques for the assessment of areal and temporal variations in streamflow quality. Open File Report, U.S. Geol. Surv., Washington, D.C.

    Google Scholar 

  52. Cailas MD, Cavadias G, Gehr R (1986) Application of a nonparametric approach for monitoring and detecting trends in water quality data of the St. Lawrence River. Water Pollut Res J Can 21(2):153–167

    CAS  Google Scholar 

  53. Berryman D, Bobée B, Haemmerli J (1988) Nonparametric tests for trend detection in water quality time series. J Am Water Resour Assoc 24:545–556

    Article  CAS  Google Scholar 

  54. Taylor CH, Loftis JC (1989) Testing for trend in lake and groundwater quality time series. J Am Water Resour Assoc 25:715–726. doi:10.1111/j.1752-1688.1989.tb05385.x

    Article  CAS  Google Scholar 

  55. Zetterqvist L (1991) Statistical estimation and interpretation of trends in water quality time series. Water Resour Res 27(7):1944–7973. doi:10.1029/91WR00478

    Article  Google Scholar 

  56. Yu Y, Zou S, Whittemore D (1993) Non-parametric trend analysis of water quality data of rivers in Kansas. J Hydrol 150:61–80

    Article  CAS  Google Scholar 

  57. Lettenmaier DP, Wood EF, Wallis JR (1994) Hydro-climatological trends in the continental United States, 1948–88. J Clim 7:586–607. doi:10.1175/1520-0442(1994)007<0586:HCTITC>2.0.CO;2

    Article  Google Scholar 

  58. Gan TY (1998) Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resour Res 34:3009–3015

    Article  Google Scholar 

  59. Cun C, Vilagines R (1997) Time series analysis on chlorides, nitrates, ammonium and dissolved oxygen concentrations in the Seine river near Paris. Sci Total Environ 208:59–69

    Article  CAS  Google Scholar 

  60. Douglas E, Vogel R, Kroll C (2000) Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105

    Article  Google Scholar 

  61. Burn DH, Hag Elnur MA (2002) Detection of hydrologic trends and variability. J Hydrol 255:107–122. doi:10.1016/S0022-1694(01)00514-5

    Article  Google Scholar 

  62. Broers HP, van der Grift B (2004) Regional monitoring of temporal changes in groundwater quality. J Hydrol 296:192–220. doi:10.1016/j.jhydrol.2004.03.022

    Article  CAS  Google Scholar 

  63. Mann HB (1945) Non-parametric test against trend. Econometrica 13:245–259

    Article  Google Scholar 

  64. Kendall MG (1938) A new measure of rank correlation. Biometrika 30:81–93. doi:10.2307/2332226

    Article  Google Scholar 

  65. Kendall MG (1962) Rank correlation methods, 3rd edn. Hafner, New York

    Google Scholar 

  66. Kendall M (1975) Multivariate methods. Charles Griffin, London

    Google Scholar 

  67. Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363. doi:10.1016/j.jhydrol.2007.11.009

    Article  Google Scholar 

  68. Gan TY (1992) Finding trends in air temperature and precipitation for Canada and North-eastern United States. In: Kite GW, Harvey KD (eds) Using hydrometric data to detect and monitor climatic change. Proceedings of NHRI Workshop No. 8, National Hydrology Research Institute, Saskatoon, SK, pp 57–78

    Google Scholar 

  69. Kahya E, Kalaycı S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144. doi:10.1016/j.jhydrol.2003.11.006

    Article  Google Scholar 

  70. Sneyers R (1990) On the statistical analysis of series of observations. World Meteorological Organization, Technical Note 143, Geneva, Switzerland

    Google Scholar 

  71. Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011–2026. doi:10.1002/hyp.5993

    Article  Google Scholar 

  72. Shifteh Some’e B, Ezani A, Tabari H (2012) Spatiotemporal trends and change point of precipitation in Iran. Atmos Res 113:1–12. doi:10.1016/j.atmosres.2012.04.016

    Article  Google Scholar 

  73. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. NederlAkadWetensch Proc 53:386–392 (Part I), 521–525 (Part II), 1397–1412 (Part III)

    Google Scholar 

  74. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  75. Hamed KH (2014) The distribution of Spearman’s rho trend statistic for persistent hydrologic data. Hydrol Sci J. doi:10.1080/02626667.2014.968573

    Google Scholar 

  76. Bodenhofer U, Klawonn F (2008) Robust rank correlation coefficients on the basis of fuzzy orderings: initial steps. An overview of rank correlation measures. Mathwa Soft Comput 15:5–20

    Google Scholar 

  77. Bodenhofer U, Krone M, Klawonn F (2013) Testing noisy numerical data for monotonic association. Inf Sci 245:21–37. doi:10.1016/j.ins.2012.11.026

    Article  Google Scholar 

  78. Bodenhofer U, Krone M (2013) RoCoCo an R package implementing a robust rank correlation coefficient and a corresponding test, software manual. Institute of Bioinformatics, Johannes Kepler University Linz

    Google Scholar 

  79. Von Storch H (1995) Misuses of statistical analysis in climate research. In: von Storch H, Navarra A (eds) Analysis of climate variability SE-2. Springer, Berlin, pp 11–26

    Chapter  Google Scholar 

  80. Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829. doi:10.1002/hyp.1095

    Article  Google Scholar 

  81. Yue S, Wang CY (2002) The influence of serial correlation on the Mann–Whitney test for detecting a shift in median. Adv Water Resour 25:325–333. doi:10.1016/S0309-1708(01)00049-5

    Article  Google Scholar 

  82. Yue S, Pilon P (2004) A comparison of the power of the t test, Mann–Kendall and bootstrap tests for trend detection. Hydrol Sci J 49(1):21–37

    Article  Google Scholar 

  83. Önöz B, Bayazit M (2011) Block bootstrap for Mann–Kendall trend test of serially dependent data. Hydrol Process 26:1–19

    Google Scholar 

  84. Yue S, Wang CY (2004) The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18:201–218. doi:10.1023/B:WARM.0000043140.61082.60

    Article  Google Scholar 

  85. Khaliq MN, Ouarda TBMJ, Gachon P et al (2009) Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers. J Hydrol 368:117–130. doi:10.1016/j.jhydrol.2009.01.035

    Article  Google Scholar 

  86. Hamed KH (2009) Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J Hydrol 368:143–155. doi:10.1016/j.jhydrol.2009.01.040

    Article  Google Scholar 

  87. Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour Res 38:4–1–4–7. doi:10.1029/2001WR000861

  88. Miao C, Ni J (2010) Implement of filter to remove the autocorrelation’s influence on the Mann-Kendall test: a case in hydrological series. Int J Food Agric 8:1241–1246

    Google Scholar 

  89. Matalas NC, Sankarasubramanian A (2003) Effect of persistence on trend detection via regression. Water Resour Res 39. doi:10.1029/2003WR002292

  90. Yue S, Pilon P (2003) Interaction between deterministic trend and autoregressive process. Water Resour Res 39. doi:10.1029/2001WR001210

  91. Perron P, Yabu T (2009) Estimating deterministic trends with an integrated or stationary noise component. J Econ 151:56–69

    Article  Google Scholar 

  92. Salmi T, Maatta A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates. Publ Air Qual 31:1–35

    Google Scholar 

  93. Tabari H, Talaee PH (2011) Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob Planet Change 79:1–10. doi:10.1016/j.gloplacha.2011.07.008

    Article  Google Scholar 

  94. U.S. EPA (2009) US Environmental Protection Agency. Statistical analysis of groundwater monitoring data at RCRA facilities. Unified Guidance. Appendix C3. EPA 530/R-09-007

    Google Scholar 

  95. Arnau J, Bono R (2001) Autocorrelation and bias in short time series: an alternative estimator. Qual Quant 365–387

    Google Scholar 

  96. Arnau J, Bono R (2002) A program to calculate the empirical bias in autocorrelation estimators. Psicothema 14:669–672

    Google Scholar 

  97. Kan R, Wang X (2010) On the distribution of the sample autocorrelation coefficients. J Econ 154:101–121. doi:10.1016/j.jeconom.2009.06.010

    Article  Google Scholar 

  98. Solanas A, Manolov R, Sierra V (2010) Lag-one autocorrelation in short series: estimation and hypotheses testing. Int J Method Exp Psychol 31(2):357–381

    Google Scholar 

  99. Fuller WA (1976) Introduction to statistical time series. Wiley, New York

    Google Scholar 

  100. Moran PAP (1948) The interpretation of statistical maps. J R Stat Soc Ser B 3:243–251

    Google Scholar 

  101. Huitema BE, McKean JW (1991) Autocorrelation estimation and inference with small samples. Psychol Bull 110:291–304. doi:10.1037//0033-2909.110.2.291

    Article  Google Scholar 

  102. Kendall M, Ord JK (1990) Time series. Edward Arnold, London

    Google Scholar 

  103. Decarlo LT, Tryon WW (1993) Estimating and testing autocorrelation with small samples: a comparison of the c-statistic to a modified estimator. Behav Res Ther 31:781–788

    Article  CAS  Google Scholar 

  104. Matyas TA, Greenwood KM (1991) Problems in the estimation of autocorrelation in brief time series and some implications for behavioral data. Behav Assess 13:137–157

    Google Scholar 

  105. Matalas NC, Langbein WB (1962) Information content of the mean. J Geophys Res 67:3441–3448. doi:10.1029/JZ067i009p03441

    Article  Google Scholar 

  106. Lettenmaier DP (1976) Detection of trends in water quality data from records with dependent observations. Water Resour Res 12:1037–1046. doi:10.1029/WR012i005p01037

    Article  Google Scholar 

  107. Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196. doi:10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  108. Bayley G, Hammersley J (1946) The “effective” number of independent observations in an autocorrelated time series. J R Stat Soc 8:184–197

    Google Scholar 

  109. Yue S, Pilon P, Phinney B (2003) Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol Sci J 48:51–63

    Article  Google Scholar 

  110. Aziz OI, Burn DH (2006) Trends and variability in the hydrological regime of the Mackenzie River Basin. J Hydrol 319:282–294. doi:10.1016/j.jhydrol.2005.06.039

    Article  Google Scholar 

  111. Novotny EV, Stefan HG (2007) Stream flow in Minnesota: indicator of climate change. J Hydrol 334:319–333. doi:10.1016/j.jhydrol.2006.10.011

    Article  Google Scholar 

  112. Kumar S, Merwade V, Kam J, Thurner K (2009) Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. J Hydrol 374:171–183. doi:10.1016/j.jhydrol.2009.06.012

    Article  Google Scholar 

  113. Oguntunde PG, Abiodun BJ, Lischeid G (2011) Rainfall trends in Nigeria, 1901–2000. J Hydrol 411:207–218. doi:10.1016/j.jhydrol.2011.09.037

    Article  Google Scholar 

  114. Tabari H, Abghari H, Hosseinzadeh Talaee P (2012) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process 26:3351–3361. doi:10.1002/hyp.8460

    Article  Google Scholar 

  115. Bayazit M, Önöz B (2007) To prewhiten or not to prewhiten in trend analysis? Hydrol Sci J 52:611–624. doi:10.1623/hysj.52.4.611

    Article  Google Scholar 

  116. Hamed KH (2008) Discussion of “To prewhiten or not to prewhiten in trend analysis?.”. Hydrol Sci J 53:667–668. doi:10.1623/hysj.53.3.667

    Article  Google Scholar 

  117. Salas-La Cruz JD (1972) Information content of the regional mean, vol 2. In: Proceedings of the international symposium on uncertainties in hydrologic and water resource systems. University of Arizona, Tucson, pp 646–660

    Google Scholar 

  118. McLeod AI (2011) Kendall: Kendall rank correlation and Mann-Kendall trend test. R package version 2.2. http://CRAN.R-project.org/package=Kendall

  119. Komsta L (2013) mblm: Median-Based Linear Models. R package. version 0.12. http://CRAN.R-project.org/package=mblm

  120. Sonderegger D (2012) SiZer: SiZer: significant zero crossings. R package version 0.1-4. http://CRAN.R-project.org/package=SiZer

  121. Davies RB (1987) Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74:33–43

    Google Scholar 

  122. Muggeo VMR (2008) Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oliva, F., Vegas, E., Civit, S., Garrido, T., Fraile, J., Munné, A. (2015). Trend Assessment for Groundwater Pollutants: A Brief Review and Some Remarks. In: Munné, A., Ginebreda, A., Prat, N. (eds) Experiences from Ground, Coastal and Transitional Water Quality Monitoring. The Handbook of Environmental Chemistry, vol 43. Springer, Cham. https://doi.org/10.1007/698_2015_407

Download citation

Publish with us

Policies and ethics