Skip to main content

Occupational Release of Engineered Nanoparticles: A Review

  • Chapter
  • First Online:
Book cover Indoor and Outdoor Nanoparticles

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 48))

  • 778 Accesses

Abstract

Characterising the release of different types of engineered nanoparticles (ENPs) from various processes is of critical importance for the assessment of human exposure, as well as understanding the possible health effects of these particles. Therefore, the main aim of this chapter is to present a comprehensive review of studies which report on the release of airborne ENPs in different nanotechnology workplaces. The chapter will cover topics of relevance to the occupational characterisation of ENP emissions, ranging from the identification of different particle release sources and scenarios to measurement methods and working towards a more uniform approach to characterisation. Furthermore, a brief review of ENP exposure control strategies, together with the application of mathematical modelling as an effective tool for the characterisation of emissions at nanotechnology workplaces, is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47. doi:10.1016/j.jclepro.2011.12.018

  2. Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11. doi:10.1016/j.envint.2013.04.003

  3. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monitor 13(5):1145–1155. doi:10.1039/c0em00547a

    Article  CAS  Google Scholar 

  4. Hämeri K, Lähde T, Hussein T, Koivisto J, Savolainen K (2009) Facing the key workplace challenge: assessing and preventing exposure to nanoparticles at source. Inhal Toxicol 21(s1):17–24. doi:10.1080/08958370902942525

  5. Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52(8):695–706. doi:10.1093/annhyg/men058

    Article  Google Scholar 

  6. Kuhlbusch T, Neumann S, Fissan H (2004) Number size distribution, mass concentration, and particle composition of PM1, PM2. 5, and PM10 in bag filling areas of carbon black production. J Occup Environ Hyg 1(10):660–671

    Article  CAS  Google Scholar 

  7. Kuhlbusch TAJ, Fissan H (2006) Particle characteristics in the reactor and pelletizing areas of carbon black production. J Occup Environ Hyg 3(10):558–567. doi:10.1080/15459620600912280

    Article  CAS  Google Scholar 

  8. Methner M, Hodson L, Dames A, Geraci C (2010) Nanoparticle emission assessment technique (NEAT) for the Identification and measurement of potential inhalation exposure to engineered nanomaterials – part B: results of 12 field studies. J Occup Environ Hyg 7:163–176

    Article  CAS  Google Scholar 

  9. Yeganeh B, Kull CM, Hull MS, Marr LC (2008) Characterization of airborne particles during production of carbonaceous nanomaterials. Environ Sci Technol 42(12):4600–4606. doi:10.1021/es703043c

    Article  CAS  Google Scholar 

  10. Fujitani Y, Kobayashi T, Arashidani K, Kunugita N, Suemura K (2008) Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg 5(6):380–389

    Article  CAS  Google Scholar 

  11. Tsai S-J, Hofmann M, Hallock M, Ada E, Kong J, Ellenbecker M (2009) Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ Sci Technol 43(15):6017–6023. doi:10.1021/es900486y

    Article  CAS  Google Scholar 

  12. Demou E, Stark WJ, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53(8):829–838. doi:10.1093/annhyg/mep061

    Article  CAS  Google Scholar 

  13. Park J, Kwak BK, Bae E, Lee J, Kim Y, Choi K, Yi J (2009) Characterization of exposure to silver nanoparticles in a manufacturing facility. J Nanoparticle Res 11(7):1705–1712

    Article  CAS  Google Scholar 

  14. Wang J, Asbach C, Fissan H, Hülser T, Kuhlbusch TJ, Thompson D, Pui DH (2011) How can nanobiotechnology oversight advance science and industry: examples from environmental, health, and safety studies of nanoparticles (nano-EHS). J Nanoparticle Res 13(4):1373–1387. doi:10.1007/s11051-011-0236-z

    Article  Google Scholar 

  15. Möhlmann C, Welter J, Klenke M, Sander J (2009) Workplace exposure at nanomaterial production processes. In: Journal of Physics: conference series, 2009. IOP Publishing, p 012004

    Google Scholar 

  16. Tsai S-J, Ashter A, Ada E, Mead JL, Barry CF, Ellenbecker MJ (2008) Control of airborne nanoparticles release during compounding of polymer nanocomposites. Nano 3:301–309. doi:10.1142/S179329200800112X

  17. Kuhlbusch T, Kaminski H, Jarzyna D, Fissan H, Asbach C (2011) Measurements of nanoscale TiO2 and Al2O3 in workplace environments-methodology and results. JOEH

    Google Scholar 

  18. Faghihi EM, Martin D, Clifford S, Edwards G, He C, Asbach C, Morawska L (2014) Are there generalizable trends in the release of airborne clay nanoparticles from a jet milling process? Aerosol Air Qual Res, (Article in Press). doi:10.4209/aaqr.2014.06.0124

  19. Evans D, Ki Ku B, Birch M, Dunn K (2010) Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg 54(5):514–531

    Article  CAS  Google Scholar 

  20. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67(1):87–107

    Article  CAS  Google Scholar 

  21. CSIRO (2013) Investigating the emissions of nanomaterials from composites and other solid articles during machining processes. CSIRO, Safe Work Australia, Canberra

    Google Scholar 

  22. Tsai S-JC, Ada E, Isaacs JA, Ellenbecker MJ (2009) Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanoparticle Res 11(1):147–161

    Article  CAS  Google Scholar 

  23. Johnson DR, Methner MM, Kennedy AJ, Steevens JA (2010) Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect 118(1):49

    CAS  Google Scholar 

  24. Cena LG, Peters TM (2011) Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J Occup Environ Hyg 8(2):86–92

    Article  CAS  Google Scholar 

  25. Methner M, Crawford C, Geraci C (2012) Evaluation of the potential airborne release of carbon nanofibers during the preparation, grinding, and cutting of epoxy-based nanocomposite material. J Occup Environ Hyg 9(5):308–318. doi:10.1080/15459624.2012.670790

    Article  CAS  Google Scholar 

  26. Raynor PC, Cebula JI, Spangenberger JS, Olson BA, Dasch JM, D’Arcy JB (2011) Assessing potential nanoparticle release during nanocomposite shredding using direct-reading instruments. J Occup Environ Hyg 9(1):1–13. doi:10.1080/15459624.2012.633061

    Article  Google Scholar 

  27. Mazzuckelli LF, Methner MM, Birch ME, Evans DE, Ku B-K, Crouch K, Hoover MD (2007) Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4(12):D125–D130

    Article  Google Scholar 

  28. O'Shaughnessy PT (2013) Occupational health risk to nanoparticulate exposure. Environ Sci Processes Impacts 15(1):49–62

    Article  Google Scholar 

  29. Kuhlbusch T, Asbach C, Fissan H, Gohler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Particle and Fibre Toxicology 8 (22):provisional version

    Google Scholar 

  30. Brouwer DH, van Duuren-Stuurman B, Berges M, Bard D, Jankowska E, Moehlmann C, Pelzer J, Mark D (2013) Workplace air measurements and likelihood of exposure to manufactured nano-objects, agglomerates, and aggregates. J Nanoparticle Res 15(11):1–14

    Article  Google Scholar 

  31. Lee JH, Ahn K, Kim SM, Jeon KS, Lee JS, Yu IJ (2012) Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles. J Nanoparticle Res 14(9):1–10

    Article  Google Scholar 

  32. Price HD, Stahlmecke B, Arthur R, Kaminski H, Lindermann J, Däuber E, Asbach C, Kuhlbusch TAJ, BéruBé KA, Jones TP (2014) Comparison of instruments for particle number size distribution measurements in air quality monitoring. J Aerosol Sci 76:48–55. doi:10.1016/j.jaerosci.2014.05.001

  33. Zimmerman N, Godri Pollitt KJ, Jeong C-H, Wang JM, Jung T, Cooper JM, Wallace JS, Evans GJ (2014) Comparison of three nanoparticle sizing instruments: the influence of particle morphology. Atmos Environ 86:140–147. doi:10.1016/j.atmosenv.2013.12.023

  34. Wang J, Asbach C, Fissan H, Hülser T, Kaminski H, Kuhlbusch TJ, Pui DH (2012) Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility. J Nanoparticle Res 14(4):1–9. doi:10.1007/s11051-012-0759-y

    Google Scholar 

  35. Ji JH, Kim JB, Lee G, Bae G-N (2015) Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace. J Nanoparticle Res 17(2):1–18

    Article  CAS  Google Scholar 

  36. Tsai C-J, Huang C-Y, Chen S-C, Ho C-E, Huang C-H, Chen S-W, Chang C-P, Tsai S-J, Ellenbecker MJ (2011) Exposure assessment of nano-sized and respirable particles at different workplaces. J Nanoparticle Res 13:4161–4172

    Article  CAS  Google Scholar 

  37. Görner P, Simon X, Bémer D, Lidén G (2012) Workplace aerosol mass concentration measurement using optical particle counters. J Environ Monit 14(2):420–428

    Article  Google Scholar 

  38. Kero I, Naess MK, Tranell G (2015) Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI). J Occup Environ Hyg 12(1):37–44

    Article  CAS  Google Scholar 

  39. Lanki T, Tikkanen J, Janka K, Taimisto P, Lehtimäki M (2011) An electrical sensor for long-term monitoring of ultrafine particles in workplaces. In: Journal of Physics: Conference Series, 2011. IOP Publishing, p 012013

    Google Scholar 

  40. Kim B, Lee JS, Choi B-S, Park S-Y, Yoon J-H, Kim H (2013) Ultrafine particle characteristics in a rubber manufacturing factory. Ann Occup Hyg 57(6):728–739

    Article  CAS  Google Scholar 

  41. Li L, Zuo Z, Japuntich DA, Pui DY (2012) Evaluation of filter media for particle number, surface area and mass penetrations. Ann Occup Hyg 56(5):581–594

    CAS  Google Scholar 

  42. Tsai C-J, Liu C-N, Hung S-M, Chen S-C, Uang S-N, Cheng Y-S, Zhou Y (2012) Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environ Sci Technol 46(8):4546–4552

    Article  CAS  Google Scholar 

  43. Zhang M, Jian L, Bin P, Xing M, Lou J, Cong L, Zou H (2013) Workplace exposure to nanoparticles from gas metal arc welding process. J Nanoparticle Res 15(11):1–14

    Google Scholar 

  44. Chen S-C, Wang J, Fissan H, Pui DY (2013) Use of Nuclepore filters for ambient and workplace nanoparticle exposure assessment—spherical particles. Atmos Environ 77:385–393

    Article  CAS  Google Scholar 

  45. Methner M, Hodson L, Dames A, Geraci C (2009) Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part B: results from 12 field studies. J Occup Environ Hyg 7(3):163–176. doi:10.1080/15459620903508066

    Article  Google Scholar 

  46. BSI (2010) (BSI PD 6699-3:2010) Nanotechnologies—Part 3: guide to assessing airborne exposure in occupational settings relevant to nanomaterials. British Standards Institution, London

    Google Scholar 

  47. Reuter M, et al. (2011) Approach towards an exposure assessment strategy for aerosols released from engineered nanomaterials from workplace operations. Paper presented at the INRS Occupational Health Research Conference, Book of Abstracts, Vandoeuvre, France

    Google Scholar 

  48. Koponen IK, Jensen KA, Schneider T (2010) Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J Expo Sci Environ Epidemiol 21(4):408–418

    Article  Google Scholar 

  49. Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2–3):120-127. doi:10.1016/j.tox.2009.11.017

  50. Brouwer D, Duuren-Stuurman B, Berges M, Jankowska E, Bard D, Mark D (2009) From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanoparticle Res 11(8):1867–1881. doi:10.1007/s11051-009-9772-1

    Article  CAS  Google Scholar 

  51. Wang Y-F, Tsai P-J, Chen C-W, Chen D-A, Hsu A (2010) Using a modified electrical aerosol detector to predict nanoparticle exposures to different regions on the respiratory tract for workers in a carbon black manufacturing industry. Environ Sci Technol 44(17):6767–6774

    Article  CAS  Google Scholar 

  52. Peters T, Elzey S, Johnson R, Park H, Grassian V, Maher T, O'Shaugnessy P (2009) Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J Occup Environ Hyg 6:73–81

    Article  CAS  Google Scholar 

  53. Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Deddens JA (2013) Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: mobile direct-reading sampling. Ann Occup Hyg 57(3):328–344. doi:10.1093/annhyg/mes079

    Article  CAS  Google Scholar 

  54. Shepard MN, Brenner S (2014) An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication. Ann Occup Hyg 58(2):251–265. doi:10.1093/annhyg/met064

    Article  CAS  Google Scholar 

  55. Hedmer M, Isaxon C, Nilsson PT, Ludvigsson L, Messing ME, Genberg J, Skaug V, Bohgard M, Tinnerberg H, Pagels JH (2014) Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Ann Occup Hyg 58(3):355–379. doi:10.1093/annhyg/met072

    Article  CAS  Google Scholar 

  56. Schlagenhauf L, Chu BTT, Buha J, Nüesch F, Wang J (2012) Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process. Environ Sci Technol 46(13):7366–7372. doi:10.1021/es300320y

    Article  CAS  Google Scholar 

  57. Xing M, Zou H, Gao X, Chang B, Tang S, Zhang M (2015) Workplace exposure to airborne alumina nanoparticles associated with separation and packaging processes in a pilot factory. Environ Sci Processes Impacts 17(3):656–666

    Google Scholar 

  58. Bello D, Wardle B, Yamamoto N, Guzman deVilloria R, Garcia E, Hart A, Ahn K, Ellenbecker M, Hallock M (2009) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 11(1):231–249. doi:10.1007/s11051-008-9499-4

  59. Fonseca AS, Viitanen A-K, Koivisto AJ, Kangas A, Huhtiniemi M, Hussein T, Vanhala E, Viana M, Querol X, Hämeri K (2014) Characterization of exposure to carbon nanotubes in an industrial setting. Ann Occup Hyg. doi:10.1093/annhyg/meu110

    Google Scholar 

  60. Brouwer D, Berges M, Virji MA, Fransman W, Bello D, Hodson L, Gabriel S, Tielemans E (2012) Harmonization of measurement strategies for exposure to manufactured nano-objects; report of a workshop. Ann Occup Hyg 56(1):1–9. doi:10.1093/annhyg/mer099

    Article  Google Scholar 

  61. Smith TJ, Kriebel D (2010) A biologic approach to environmental assessment and epidemiology. Oxford University Press, Oxford

    Book  Google Scholar 

  62. Carrasco JL, King TS, Chinchilli VM (2009) The concordance correlation coefficient for repeated measures estimated by variance components. J Biopharm Stat 19(1):90–105

    Article  Google Scholar 

  63. Pfefferkorn FE, Bello D, Haddad G, Park J-Y, Powell M, Mccarthy J, Bunker KL, Fehrenbacher A, Jeon Y, Virji MA, Gruetzmacher G, Hoover MD (2010) Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum. Ann Occup Hyg 54(5):486–503. doi:10.1093/annhyg/meq037

    Article  CAS  Google Scholar 

  64. Sutariya VB, Pathak Y (2014) Biointeractions of nanomaterials. Taylor & Francis Group, Boca Raton

    Google Scholar 

  65. Plog BA, Quinlan PJ, Villarreal J (2012) Fundamentals of industrial hygiene. 6th edn. National Safety Council Press

    Google Scholar 

  66. Aldrich R, Arena L (2013) Evaluating ventilation systems for existing homes. Consortium for Advanced Residential Buildings, Norwalk. doi:10.2172/1064546

  67. Hussein T, Kulmala M (2008) Indoor aerosol modeling: basic principles and practical applications. Water Air Soil Pollut Focus 8(1):23–34. doi:10.1007/s11267-007-9134-x

    Article  Google Scholar 

  68. Hussein T, Korhonen H, Herrmann E, Hämeri K, Lehtinen KEJ, Kulmala M (2005) Emission rates due to indoor activities: indoor aerosol model development, evaluation, and applications. Aerosol Sci Technol 39(11):1111–1127. doi:10.1080/02786820500421513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Morawska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Faghihi, E.M., Morawska, L. (2015). Occupational Release of Engineered Nanoparticles: A Review. In: Viana, M. (eds) Indoor and Outdoor Nanoparticles. The Handbook of Environmental Chemistry, vol 48. Springer, Cham. https://doi.org/10.1007/698_2015_401

Download citation

Publish with us

Policies and ethics