Skip to main content

Pros and Cons of Biological Quality Element Phytoplankton as a Water-Quality Indicator in the NW Mediterranean Sea

  • Chapter
  • First Online:
Book cover Experiences from Ground, Coastal and Transitional Water Quality Monitoring

Abstract

The Water Framework Directive (WFD) mandates the use of biological quality element (BQE) phytoplankton to assess the ecological status of coastal and transitional water bodies (WB). Here, we present (i) a critique of the general ecological assumptions of the WFD, (ii) a review of the ecological features of coastal phytoplankton dynamics, (iii) several approaches to establish a methodology to assess water-quality along the Catalan coast (NW Mediterranean Sea) based on BQE phytoplankton, and (iv) a critical examination of the use of phytoplankton as a BQE. Since 2005, we have followed several approaches aimed at assessing water-quality based on BQE phytoplankton and linking this indicator to a proxy to a costal pressure index. We have therefore studied phytoplankton communities at three different levels: as potentially harmful species, as functional or taxonomic groups, and with respect to their bloom frequency. Despite intense efforts, none of these fulfilled the WFD’s management requirements, which in this context were found to contain several inherent flaws. As an alternative, we propose a methodology to assess water-quality based on the use of chlorophyll-a (Chl-a), as a proxy of phytoplankton biomass. The Chl-a concentration offers a very simple and representative measure of the phytoplankton community, and, importantly, it is used worldwide in water-quality studies, thus allowing not only regional but also cross-country comparisons. Moreover, because Chl-a concentrations clearly respond to nutrient enrichment, we were able to establish a BQE-specific typology for water bodies based on salinity, which is linked to nutrient loads. Using a newly developed coastal pressure index (Land Use Simplified Index, LUSI) that also reflects nutrient inputs, we demonstrated a significant pressure–impact relationship, as required by the WFD for management purposes. Based on this relationship, we were able to define reference conditions and water-quality boundaries for each type. We conclude our discussion with a consideration of the pros and cons of the use of phytoplankton as a BQE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Josefsson H, Baaner L (2011) The water framework directive – a directive for the twenty-first century? J Environ Law 23:463–486

    Article  Google Scholar 

  2. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington DC, p 658

    Book  Google Scholar 

  3. Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1(4):493–509

    Google Scholar 

  4. Kilham P, Kilham SS (1980) The evolutionary ecology of phytoplankton. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell, Oxford, pp 571–598

    Google Scholar 

  5. Harris GP (1984) Phytoplankton productivity and growth measurements: past, present and future. J Plankton Res 6(2):219

    Article  Google Scholar 

  6. Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature (Lond) 402(6760):407–410

    Article  Google Scholar 

  7. Reynolds CS, Smayda TJ (1998) Principles of species selection and community assembly in the phytoplankton: further explorations of the Mandala. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Santiago De Compostela, Spain, pp 8–10

    Google Scholar 

  8. Smayda TJ (1980) Phytoplankton species succession. In: Morris I (ed) The physiological ecology of phytoplankton, Studies in ecology. Blackwell, Oxford, pp 493–570

    Google Scholar 

  9. Justic D, Rabalais NN, Turner RE (1995) Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull 30(1):41–46

    Article  CAS  Google Scholar 

  10. Vila M, Masó M (2005) Phytoplankton functional groups and harmful algal species in anthropogenically impacted waters of the NW Mediterranean Sea. Sci Mar 69(1):31–45

    Article  Google Scholar 

  11. Arin L, Guillén J, Segura-Noguera M, Estrada M (2013) Open sea hydrographic forcing of nutrient and phytoplankton dynamics in a Mediterranean coastal ecosystem. Estuar Coast Shelf Sci 133:116–128

    Article  Google Scholar 

  12. Ribera d’Alcalà M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar 67(1):65–83

    Google Scholar 

  13. Garcés E, Masó M (2001) Phytoplankton potential growth rate versus increase in cell numbers: estimation of cell lysis. Mar Ecol Prog Ser 212:297–300

    Article  Google Scholar 

  14. Steidinger KA, Garcés E (2006) Importance of life cycles in the ecology of harmful microalgae. In: Graneli E, Turner JT (eds) Ecology of harmful algae, vol 189. Springer, Berlin, pp 37–49

    Chapter  Google Scholar 

  15. Stolte W, Garcés E (2006) Ecological aspects of harmful algal in situ population growth rates. In: Graneli E, Turner JT (eds) Ecology of harmful algae, vol 189. Springer, Berlin, pp 139–152

    Chapter  Google Scholar 

  16. Cloern JE, Jassby AD (2008) Complex seasonal patterns of primary producers at the land–sea interface. Ecol Lett 11(12):1294–1303

    Article  Google Scholar 

  17. Cloern JE, Jassby AD (2010) Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuar Coasts 33(2):230–241

    Article  CAS  Google Scholar 

  18. Garmendia M, Borja Á, Franco J, Revilla M (2013) Phytoplankton composition indicators for the assessment of eutrophication in marine waters: present state and challenges within the European directives. Mar Pollut Bull 66(1–2):7–16

    Article  CAS  Google Scholar 

  19. Borja Á, Dauer DM, Grémare A (2012) The importance of setting targets and reference conditions in assessing marine ecosystem quality. Ecol Indic 12(1):1–7

    Article  Google Scholar 

  20. Gowen RJ, Tett P, Smayda TJ (2012) Phytoplankton and the balance of nature: an opinion. Estuar Coast Shelf Sci 113:317–323

    Article  Google Scholar 

  21. Lancelot C, Rousseau V, Gypens N (2009) Ecologically based indicators for Phaeocystis disturbance in eutrophied Belgian coastal waters (Southern North Sea) based on field observations and ecological modelling. J Sea Res 61(1–2):44–49

    Article  Google Scholar 

  22. Ferreira JG, Vale C, Soares CV, Salas F, Stacey PE, Bricker SB, Silva MC, Marques JC (2007) Monitoring of coastal and transitional waters under the E.U. water framework directive. Environ Monit Assess 135(1–3):195–216

    Article  CAS  Google Scholar 

  23. Nixon SW (2009) Eutrophication and the macroscope. Hydrobiologia 629(1):5–19

    Article  CAS  Google Scholar 

  24. OSPAR (2008) Second OSPAR integrated report on the eutrophication status of the OSPAR maritime area, 2008–372. OSPAR, London, p 107

    Google Scholar 

  25. HELCOM (2009) Eutrophication in the Baltic Sea. An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Baltic Sea Environment Proceedings No. 115A

    Google Scholar 

  26. Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8(1):21–32

    Article  CAS  Google Scholar 

  27. Bricker SB, Ferreira JG, Simas T (2003) An integrated methodology for assessment of estuarine trophic status. Ecol Model 169(1):39–60

    Article  CAS  Google Scholar 

  28. Ferreira JG, Andersen JH, Borja A, Bricker SB, Camp J, Cardoso da Silva M, Garcés E, Heiskanen A-S, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Claussen U (2011) Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar Coast Shelf Sci 93(2):117–131

    Article  CAS  Google Scholar 

  29. Borja A, Bricker SB, Dauer DM, Demetriades NT, Ferreira JG, Forbes AT, Hutchings P, Jia X, Kenchington R, Marques JC, Zhu CJ (2008) Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Mar Pollut Bull 56(9):1519–1537

    Article  CAS  Google Scholar 

  30. Carstensen J, Henriksen P (2009) Phytoplankton biomass response to nitrogen inputs: a method for WFD boundary setting applied to Danish coastal waters. Hydrobiologia 633(1):137–149

    Article  CAS  Google Scholar 

  31. Devlin MJ, Best M, Coates D, Bresnan E, O’Boyle S, Park R, Silke J, Cusack C, Skeats J (2007) Establishing boundary classes for the classification of UK marine waters using phytoplankton communities. Mar Pollut Bull 55(1–6):91–103

    Article  CAS  Google Scholar 

  32. Devlin MJ, Barry J, Painting SJ, Best M (2009) Extending the phytoplankton tool kit for the UK water framework directive: indicators of phytoplankton community structure. Hydrobiologia 633(1):151–168

    Article  Google Scholar 

  33. Claussen U, Zevenboom W, Brockmann U, Topcu D, Bot P (2009) Assessment of the eutrophication status of transitional, coastal and marine waters within OSPAR. Hydrobiologia 629(1):49–58

    Article  CAS  Google Scholar 

  34. Garmendia M, Revilla M, Bald J, Franco J, Laza-Martínez A, Orive E, Seoane S, Valencia V, Borja Á (2011) Phytoplankton communities and biomass size structure (fractionated chlorophyll “a”), along trophic gradients of the Basque coast (northern Spain). Biogeochemistry 106(2):243–263

    Article  CAS  Google Scholar 

  35. Ribera d’Alcalà M, Civitarese G, Conversano F, Lavezza R (2003) Nutrient ratios and fluxes hint at overlooked processes in the Mediterranean Sea. J Geophys Res Ocean 108(C9):8106

    Article  CAS  Google Scholar 

  36. Flo E, Garcés E, Manzanera M, Camp J (2011) Coastal inshore waters in the NW Mediterranean: physico-chemical and biological. characterization and management implications. Estuar Coast Shelf Sci 93:279–289

    Article  CAS  Google Scholar 

  37. Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean and Black sea: major drivers for ecosystem changes during past and future decades? Prog Oceanog 80(3–4):199–217

    Article  Google Scholar 

  38. Liquete C, Canals M, Ludwig W, Arnau P (2009) Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts. J Hydrol 366(1–4):76–88

    Article  Google Scholar 

  39. IDESCAT (1996) (Institut d’Estadística de Catalunya) Padró d’habitants 1996. WWW Page. http://www.idescat.es/. Accessed 06 Sept 2010

  40. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of sea water analysis. Verlag Chemie, Germany

    Google Scholar 

  41. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res 10:221–231

    CAS  Google Scholar 

  42. Utermöhl H (1958) Zur vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung Theoretische und Angewandte Limnologie 9:1–38

    Google Scholar 

  43. Carletti A, Heiskanen A-S (2009) Water framework directive intercalibration technical report. Part 3: Coastal and Transitional waters. JRC Scientific and Technical Reports. EUR 23838 EN/3. Office for Official Publications of the European Communities, Luxembourg, 240 pp. ISBN 978-92-79-12568-3

    Google Scholar 

  44. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–952

    Article  CAS  Google Scholar 

  45. Lopez y Royo C, Casazza G, Pergent-Martini C, Pergent G (2010) A biotic index using the seagrass Posidonia oceanica (BiPo), to evaluate ecological status of coastal waters. Ecol Indic 10(2):380–389

    Article  CAS  Google Scholar 

  46. Lopez y Royo C, Silvestri C, Pergent G, Casazza G (2009) Assessing human-induced pressures on coastal areas with publicly available data. J Environ Manag 90(3):1494–1501

    Article  Google Scholar 

  47. HELCOM (2010) Ecosystem health of the Baltic sea. 2003e2007: HELCOM Initial Holistic Assessment Baltic Sea Environment Proceedings No 122

    Google Scholar 

  48. Flo E, Camp J, Garcés E (2011) Assessment of pressure methodology for biological quality element phytoplankton in Catalonia, Spain: Land Uses Simplified Index (LUSI). Working document of the Water Framework Directive Intercalibration

    Google Scholar 

  49. Reñé A, Vila M, Arin L, Sampedro N, Flo E, Camp J (2007) ¿Es la frecuencia e intensidad de proliferaciones algales nocivas un buen indicador ecológico de la calidad de aguas marinas costeras? IX Reunión Ibérica sobre Fitoplancton Tóxico y Biotoxinas

    Google Scholar 

  50. Revilla M, Franco J, Bald J, Borja A, Laza A, Seoane S, Valencia V (2009) Assessment of the phytoplankton ecological status in the Basque coast (northern Spain) according to the European Water Framework Directive. J Sea Res 61(1–2):60–67

    Article  Google Scholar 

  51. Collos Y, Bec B, Jauzein C, Abadie E, Laugier T, Lautier J, Pastoureaud A, Souchu P, Vaquer A (2009) Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J Sea Res 61(1–2):68–75

    Article  Google Scholar 

  52. Marasovic I, Nincevic Z, Kuspilic G, Marinovic S, Marinov S (2005) Long-term changes of basic biological and chemical parameters at two stations in the middle Adriatic. J Sea Res 54:3–14

    Article  CAS  Google Scholar 

  53. Margalef R, Castellví J (1967) Fitoplancton y produccion primaria de la costa catalana, de julio de 1966 a julio de 1967. Investigaciones Pesqueras 31(3):491–502

    Google Scholar 

  54. Mouillot D, Spatharis S, Reizopoulou S, Laugier T, Sabetta L, Basset A, Do Chi T (2006) Alternatives to taxonomic-based approaches to assess changes in transitional water communities. Aquat Conserv Mar Freshwat Ecosyst 16(5):469–482

    Article  Google Scholar 

  55. Carletti A, Heiskanen A-S (2009) Water Framework Directive intercalibration technical report. Part 3: Coastal and Transitional waters. European Commission, Joint Research Centre, Institute for Environment and Sustainability, JRC Scientific and Technical Reports

    Google Scholar 

  56. Degerlund M, Eilertsen HC (2010) Main species characteristics of phytoplankton spring blooms in NE Atlantic and Arctic Waters (68–80° N). Estuar Coasts 33(2):242–269

    Article  CAS  Google Scholar 

  57. Seoane S, Garmendia M, Revilla M, Borja A, Franco J, Orive E, Valencia V (2011) Phytoplankton pigments and epifluorescence microscopy as tools for ecological status assessment in coastal and estuarine waters, within the water framework directive. Mar Pollut Bull 62(7):1484–1497

    Article  CAS  Google Scholar 

  58. Domingues RB, Barbosa A, Galvão H (2008) Constraints on the use of phytoplankton as a biological quality element within the water framework directive in Portuguese waters. Mar Pollut Bull 56:1389–1395

    Article  CAS  Google Scholar 

  59. Garcés E, Camp J (2012) Habitat changes in the Mediterranean Sea and the consequences for harmful algal blooms formation. In: Stambler N (ed) Life in the Mediterranean Sea: a look at habitat changes. Nova Science, New York, pp 519–541. ISBN 978-1-61209-644-5

    Google Scholar 

  60. Spatharis S, Tsirtsis G (2010) Ecological quality scales based on phytoplankton for the implementation of water framework directive in the Eastern Mediterranean. Ecol Indic 10(4):840–847

    Article  Google Scholar 

  61. StatSoft, Inc (2001) STATISTICA (data analysis software system), version 6. www.statsoft.com

Download references

Acknowledgments

This study was funded by several contracts between Agència Catalana de l’Aigua and the Institut de Ciències del Mar, CSIC, and the DEVOTES project, DEVelopment Of innovative Tools for understanding marine biodiversity and assessing Good Environmental Status, grant agreement no. 308392. The Nutrient Analyses Service at the ICM-CSIC performed the nutrient analyses. We acknowledge all contributions to the Med-GIG database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Garcés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Camp, J. et al. (2015). Pros and Cons of Biological Quality Element Phytoplankton as a Water-Quality Indicator in the NW Mediterranean Sea. In: Munné, A., Ginebreda, A., Prat, N. (eds) Experiences from Ground, Coastal and Transitional Water Quality Monitoring. The Handbook of Environmental Chemistry, vol 43. Springer, Cham. https://doi.org/10.1007/698_2015_392

Download citation

Publish with us

Policies and ethics