New Tools to Analyse the Ecological Status of Mediterranean Wetlands and Shallow Lakes

  • Xavier D. QuintanaEmail author
  • Miguel Cañedo-Argüelles
  • Alfonso Nebra
  • Stéhanie Gascón
  • Maria Rieradevall
  • Nuno Caiola
  • Jordi Sala
  • Carles Ibàñez
  • Núria Sánchez-Millaruelo
  • Dani Boix
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 42)


The efforts done in Catalonia (Spain) to assess the ecological status of Mediterranean wetlands and shallow lakes are described. The term wetland includes all shallow lentic waterbodies, temporary or permanent, where light reaches the bottom allowing the development of primary producers at the maximum water depth. Two water quality indexes and one habitat condition rapid assessment were developed. The first quality index (QAELS 2010 e ) is based on the sensitivity of microcrustaceans (cladocerans, copepods and ostracods) and the richness of crustaceans and insects found in these habitats; the second one (EQAT) uses the composition of Chironomidae pupal exuviae. Rapid assessment of habitat condition (ECELS index) considers wetland hydromorphological aspects, the presence of human pressures in the surroundings and the conservation status of the wetland vegetation. Some data of the current ecological status of Mediterranean wetlands in Catalonia are also provided.


Chironomidae Crustaceans ECELS EQAT Habitat condition Insects QAELS Shallow lakes Transitional waters Wetlands - WFD 



This work was supported by the Catalan Water Agency, and we are especially grateful to Carolina Solà and Antoni Munné for their help during the project


  1. 1.
    Moss B, Stephen D, Alvarez C, Becares E, Van de Bund W, Collings SE, Van Donk E, De Eyto E, Feldmann T, Fernandez-Alaez C, Fernandez-Alaez M, Franken RJM, Garcia-Criado F, Gross EM, Gyllstrom M, Hansson LA, Irvine K, Jarvalt A, Jensen JP, Jeppesen E, Kairesalo T, Kornijow R, Krause T, Kunnap H, Laas A, Lille E, Lorens B, Luup H, Miracle MR, Noges P, Noges T, Nykanen M, Ott I, Peczula W, Peeters E, Phillips G, Romo S, Russell V, Salujoe J, Scheffer M, Siewertsen K, Smal H, Tesch C, Timm H, Tuvikene L, Tonno I, Virro T, Vicente E, Wilson D (2003) The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat Conserv 13(6):507–549. doi: 10.1002/aqc.592 CrossRefGoogle Scholar
  2. 2.
    Sondergaard M, Jeppesen E, Jensen JP, Amsinck SL (2005) Water framework directive: ecological classification of Danish lakes. J Appl Ecol 42(4):616–629. doi: 10.1111/j.1365-2664.2005.01040.x CrossRefGoogle Scholar
  3. 3.
    Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen AS, Johnson RK, Moe J, Pont D, Solheim AL, Van De Bund W (2010) The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408(19):4007–4019. doi: 10.1016/j.scitotenv.2010.05.031 CrossRefGoogle Scholar
  4. 4.
    Jeppesen E, Noges P, Davidson TA, Haberman J, Noges T, Blank K, Lauridsen TL, Sondergaard M, Sayer C, Laugaste R, Johansson LS, Bjerring R, Amsinck SL (2011) Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676(1):279–297. doi: 10.1007/s10750-011-0831-0 CrossRefGoogle Scholar
  5. 5.
    Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, Solimini A, van de Bund W, Zampoukas N, Hering D (2012) Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic 18:31–41. doi: 10.1016/j.ecolind.2011.10.009 CrossRefGoogle Scholar
  6. 6.
    Brucet S, Poikane S, Lyche-Solheim A, Birk S (2013) Biological assessment of European lakes: ecological rationale and human impacts. Freshw Biol 58:1106–1115. doi: 10.1111/fwb.12111 CrossRefGoogle Scholar
  7. 7.
    Poikane S, Portielje R, van den Berg M, Phillips G, Brucet S, Carvalho L, Mischke U, Ott I, Soszka H, Van Wichelen J (2014) Defining ecologically relevant water quality targets for lakes in Europe. J Appl Ecol 51(3):592–602. doi: 10.1111/1365-2664.12228 CrossRefGoogle Scholar
  8. 8.
    Golterman HL (2004) The chemistry of phosphate and nitrogen compounds in sediments. Kluwer, DordrechtGoogle Scholar
  9. 9.
    Reina M (2011) Metodología para la cuantificación del fósforo en el sedimento de los ecosistemas acuáticos del espacio natural de Doñana. Departamento de Biología Vegetal y Ecología, vol PhD Thesis. Universidad de Sevilla, SevillaGoogle Scholar
  10. 10.
    Alvarez-Cobelas M, Rojo C, Angeler D (2005) Mediterranean limnology: current status, gaps and future. J Limnol 64(1):13–29CrossRefGoogle Scholar
  11. 11.
    Beklioglu M, Romo S, Kagalou I, Quintana X, Bécares E (2007) State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584(1):317–326. doi: 10.1007/s10750-007-0577-x CrossRefGoogle Scholar
  12. 12.
    Quintana XD, Moreno-Amich R, Comin FA (1998) Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 1: differential confinement of nutrients. J Plankton Res 20(11):2089–2107CrossRefGoogle Scholar
  13. 13.
    Levin LA, Boesch DF, Covich A, Dahm C, Erseus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4(5):430–451. doi: 10.1007/s10021-001-0021-4 CrossRefGoogle Scholar
  14. 14.
    Elliott M, Quintino V (2007) The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar Pollut Bull 54(6):640–645. doi: 10.1016/j.marpolbul.2007.02.003 CrossRefGoogle Scholar
  15. 15.
    Muxika I, Borja A, Bald J (2007) Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Mar Pollut Bull 55(1–6):16–29. doi: 10.1016/j.marpolbul.2006.05.025 CrossRefGoogle Scholar
  16. 16.
    Dauvin JC, Ruellet T (2007) Polychaete/amphipod ratio revisited. Mar Pollut Bull 55(1–6):215–224. doi: 10.1016/j.marpolbul.2006.08.045 CrossRefGoogle Scholar
  17. 17.
    de-la-Ossa-Carretero JA, Simboura N, Del-Pilar-Ruso Y, Pancucci-Papadopoulou MA, Gimenez-Casalduero F, Sanchez-Lizaso JL (2012) A methodology for applying taxonomic sufficiency and benthic biotic indices in two Mediterranean areas. Ecol Indic 23:232–241. doi: 10.1016/j.ecolind.2012.03.029 CrossRefGoogle Scholar
  18. 18.
    Dimitriou PD, Apostolaki ET, Papageorgiou N, Reizopoulou S, Simboura N, Arvanitidis C, Karakassis I (2012) Meta-analysis of a large data set with Water Framework Directive indicators and calibration of a Benthic Quality Index at the family level. Ecol Indic 20:101–107. doi: 10.1016/j.ecolind.2012.02.008 CrossRefGoogle Scholar
  19. 19.
    Lucena-Moya P, Pardo I (2012) An invertebrate multimetric index to classify the ecological status of small coastal lagoons in the Mediterranean ecoregion (MIBIIN). Mar Freshw Res 63(9):801–814. doi: 10.1071/mf12104 CrossRefGoogle Scholar
  20. 20.
    Reizopoulou S, Nicolaidou A (2007) Index of size distribution (ISD): a method of quality assessment for coastal lagoons. Hydrobiologia 577:141–149. doi: 10.1007/s10750-006-0423-6 CrossRefGoogle Scholar
  21. 21.
    Basset A, Barbone E, Borja A, Brucet S, Pinna M, Quintana XD, Reizopoulou S, Rosati I, Simboura N (2012) A benthic macroinvertebrate size spectra index for implementing the Water Framework Directive in coastal lagoons in Mediterranean and Black Sea ecoregions. Ecol Indic 12(1):72–83. doi: 10.1016/j.ecolind.2011.06.012 CrossRefGoogle Scholar
  22. 22.
    Garcia-Criado F, Becares E, Fernandez-Alaez C, Fernandez-Alaez M (2005) Plant-associated invertebrates and ecological quality in some Mediterranean shallow lakes: implications for the application of the EC Water Framework Directive. Aquat Conserv 15(1):31–50. doi: 10.1002/aqc.641 CrossRefGoogle Scholar
  23. 23.
    Boix D, Gascón S, Sala J, Martinoy M, Gifre J, Quintana XD (2005) A new index of water quality assessment in Mediterranean wetlands based on crustacean and insect assemblages: the case of Catalunya (NE Iberian peninsula). Aquat Conserv 15(6):635–651CrossRefGoogle Scholar
  24. 24.
    Quade HW (1969) Cladoceran faunas associated with aquatic macrophytes in some lakes in northwestern Minnesota. Ecology 50(2):170–179. doi: 10.2307/1934843 CrossRefGoogle Scholar
  25. 25.
    McNaught DC (1975) A hypothesis to explain the succession from calanoids to cladocerans during eutrophication. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 19:724–731Google Scholar
  26. 26.
    Richman S, Dodson SI (1983) The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnol Oceanogr 28(5):948–956CrossRefGoogle Scholar
  27. 27.
    Berzins B, Bertilsson J (1989) On limnic micro-crustaceans and trophic degree. Hydrobiologia 185(2):95–100. doi: 10.1007/bf00010808 CrossRefGoogle Scholar
  28. 28.
    Paterson M (1993) The distribution of microcrustacea in the littoral of a freshwater lake. Hydrobiologia 263(3):173–183. doi: 10.1007/bf00006268 CrossRefGoogle Scholar
  29. 29.
    Stemberger RS, Lazorchek JM (1994) Zooplankton assemblage responses to disturbance gradients. Can J Fish Aquat Sci 51(11):2435–2447. doi: 10.1139/f94-243 CrossRefGoogle Scholar
  30. 30.
    de Szalay FA, Resh VH (2000) Factors influencing macroinvertebrate colonization of seasonal wetlands: responses to emergent plant cover. Freshw Biol 45(3):295–308. doi: 10.1111/j.1365-2427.2000.00623.x CrossRefGoogle Scholar
  31. 31.
    Cañedo-Argüelles M, Boix D, Sanchez-Millaruelo N, Sala J, Caiola N, Nebra A, Rieradevall M (2012) A rapid bioassessment tool for the evaluation of the water quality of transitional waters. Estuar Coast Shelf Sci 111:129–138. doi: 10.1016/j.ecss.2012.07.001 CrossRefGoogle Scholar
  32. 32.
    Sala J, Gascón S, Boix D, Gesti J, Quintana XD (2004) Proposal of a rapid methodology to assess the conservation status of Mediterranean wetlands and its application in Catalunya (NE Iberian Peninsula). Arch Sci 57(2–3):141–151Google Scholar
  33. 33.
    Alonso M (1998) Las lagunas de la España peninsular. Limnetica 15:1–176Google Scholar
  34. 34.
    Britton RH, Podlejski VD (1981) Inventory and classification of the wetlands of the Camargue (France). Aquat Bot 10(3):195–228. doi: 10.1016/0304-3770(81)90024-3 CrossRefGoogle Scholar
  35. 35.
    Robledano F, Calvo JF, Esteve MA, Palazón JA, Ramírez L, Mas J (1987) Tipología, conservación y gestión de las zonas húmedas del sureste español. Limnetica 3(2):311–320Google Scholar
  36. 36.
    Trobajo R, Quintana XD, Moreno-Amich R (2002) Model of alternative predominance of phytoplankton-periphyton-macrophytes in lentic waters of Mediterranean coastal wetlands. Arch Hydrobiol 154(1):19–40Google Scholar
  37. 37.
    Lucena-Moya P, Pardo I, Alvarez M (2009) Development of a typology for transitional waters in the Mediterranean ecoregion: the case of the islands. Estuar Coast Shelf Sci 82(1):61–72. doi: 10.1016/j.ecss.2008.12.011 CrossRefGoogle Scholar
  38. 38.
    Boix D, Gascón S, Sala J, Badosa A, Brucet S, López-Flores R, Martinoy M, Gifre J, Quintana XD (2008) Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597:53–69CrossRefGoogle Scholar
  39. 39.
    Hughes RM (1995) Defining acceptable biological status by comparing with reference conditions. In: Davies WS, Simon TP (eds) Biological assessment and criteria: tools for water resource planning and decision making. Lewis, Boca Raton, pp 31–47Google Scholar
  40. 40.
    MillenniumEcosystemAssessment (2005) Ecosystems and human wellbeing: wetlands and water synthesis. World Resources Institute, Washington, DCGoogle Scholar
  41. 41.
    Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. In: Annual review of environment and resources, vol 30. Annual Review of Environment and Resources, pp 39–74. doi:10.1146/ Scholar
  42. 42.
    Quintana XD, Comin FA, Moreno-Amich R (1998) Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 2: response of the zooplankton community to disturbances. J Plankton Res 20(11):2109–2127CrossRefGoogle Scholar
  43. 43.
    Gascón S, Boix D, Sala J, Quintana XD (2005) Variability of benthic assemblages in relation to the hydrological pattern in Mediterranean salt marshes (Emporda wetlands, NE Iberian Peninsula). Arch Hydrobiol 163(2):163–181CrossRefGoogle Scholar
  44. 44.
    Scheffer M (1998) Ecology of Shalow lakes, vol 22, Population and community biology series. Chapman & Hall, LondonGoogle Scholar
  45. 45.
    Talling JF, Driver D (1963) Some problems in the estimation of chlorophyll a in phytoplankton. In: Proceedings of a conference on primary productivity measurements, marine and freshwater, University of Hawaii, Honolulu, 1961. US Atomic Energy Commission, TID-7633, pp 142–146Google Scholar
  46. 46.
    Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag Chemie, WeinheimGoogle Scholar
  47. 47.
    ACA (2006) ECOZO. Protocol d’avaluació de l’estat ecològic de les zones humidesGoogle Scholar
  48. 48.
    Rosenberg DM, Resh VH (2001) Freshwater biomonitoring and benthic macroinvertebrates. Kluwer, BostonGoogle Scholar
  49. 49.
    Vollenweider RA, Giovanardi F, Montanari G, Rinaldi A (1998) Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9(3):329–357. doi: 10.1002/(sici)1099-095x(199805/06)9:3<329::aid-env308>;2-9 CrossRefGoogle Scholar
  50. 50.
    Coelho S, Gamito S, Perez-Ruzafa A (2007) Trophic state of Foz de Almargem coastal lagoon (Algarve, South Portugal) based on the water quality and the phytoplankton community. Estuar Coast Shelf Sci 71(1–2):218–231. doi: 10.1016/j.ecss.2006.07.017 CrossRefGoogle Scholar
  51. 51.
    Salas F, Teixeira H, Marcos C, Marques JC, Perez-Ruzafa A (2008) Applicability of the trophic index TRIX in two transitional ecosystems: the Mar Menor lagoon (Spain) and the Mondego estuary (Portugal). ICES J Mar Sci 65(8):1442–1448. doi: 10.1093/icesjms/fsn123 CrossRefGoogle Scholar
  52. 52.
    Cañedo-Argüelles M, Rieradevall M, Farres-Corell R, Newton A (2012) Annual characterisation of four Mediterranean coastal lagoons subjected to intense human activity. Estuar Coast Shelf Sci 114:59–69. doi: 10.1016/j.ecss.2011.07.017 CrossRefGoogle Scholar
  53. 53.
    Stora G, Arnoux A (1983) Effects of large fresh-water diversions on benthos of a Mediterranean lagoon. Estuaries 6(2):115–125. doi: 10.2307/1351702 CrossRefGoogle Scholar
  54. 54.
    Frantzen N, Devisser J, Vannes EH (1994) Colonization and succession of macroinvertebrates in recently freshened lake Volkerak-Zoom (The Netherlands). Hydrobiologia 275:323–334CrossRefGoogle Scholar
  55. 55.
    Gamito S (2006) Benthic ecology of semi-natural coastal lagoons, in the Ria Formosa (Southern Portugal), exposed to different water renewal regimes. Hydrobiologia 555:75–87. doi: 10.1007/s10750-005-1107-3 CrossRefGoogle Scholar
  56. 56.
    Cañedo-Argüelles M, Rieradevall M (2010) Disturbance caused by freshwater releases of different magnitude on the aquatic macroinvertebrate communities of two coastal lagoons. Estuar Coast Shelf Sci 88(2):190–198. doi: 10.1016/j.ecss.2010.03.025 CrossRefGoogle Scholar
  57. 57.
    Wallin M, Wiederholm T, Johnson RK (2003) Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. Final draft, version 7.0. Common Implementation Strategy Working Group 2.3. European UnionGoogle Scholar
  58. 58.
    Bayo M, Ortega M, Langton P, Casas JJ (2001) Evaluación ecológica de humedales y la directiva Marco Europea sobre el agua: sobre el valor indicador de las comunidades de dípteros quironómidos en los humedales litorales de la provincia de Almería., vol Actas del V Simposio Sobre El Agua En AndalucíaGoogle Scholar
  59. 59.
    Sahuquillo M, Miracle MR, Rieradevall M (2006) Macroinvertebrates associated with reed stems. In: Jones J (ed) International association of theoretical and applied limnology, vol 29, Pt 5. International Association of Theoretical and Applied Limnology – Proceedings, pp 2245–2246Google Scholar
  60. 60.
    Sahuquillo M, Poquet JM, Rueda J, Miracle MR (2007) Macroinvertebrate communities in sediment and plants in coastal Mediterranean water bodies (Central Iberian Peninsula). Ann Limnol Int J Limnol 43(2):117–130. doi: 10.1051/limn/2007018 CrossRefGoogle Scholar
  61. 61.
    Cañedo-Argüelles M, Rieradevall M (2009) Quantification of environment-driven changes in epiphytic macroinvertebrate communities associated to Phragmites australis. J Limnol 68(2):229–241. doi: 10.3274/jl09-68-2-07 CrossRefGoogle Scholar
  62. 62.
    Pinder LCV (1995) The habitats of chironomid larvae. In: Armitage PD, Cranston PS, Pinder LCV (eds) Biology and ecology of non-biting midges. Chapman & Hall, London, pp 107–135Google Scholar
  63. 63.
    Warwick WF (1990) Morphological Deformities in chironomidae (Diptera) larvae from the Lac St. Louis and Laprairie Basins of the St. Lawrence rive. J Great Lakes Res 16(2):185–208CrossRefGoogle Scholar
  64. 64.
    Wilson RS, Ruse L (2005) A guide to the identification of Genera of Chironomid Pupal Exuviae occurring in Britain and Ireland. CumbriaGoogle Scholar
  65. 65.
    Raunio J, Paasivirta L (2008) Emergence patterns of lotic Chironomidae (Diptera: Nematocera) in southern Finland and the use of their pupal exuviae in river biomonitoring. Fundam Appl Limnol 170(4):291–301. doi: 10.1127/1863-9135/2008/0170-0291 CrossRefGoogle Scholar
  66. 66.
    Ruse L (2002) Chironomid pupal exuviae as indicators of lake status. Arch Hydrobiol 153(3):367–390Google Scholar
  67. 67.
    Raunio J, Paasivirta L, Hamalainen H (2010) Assessing lake trophic status using spring-emerging chironomid pupal exuviae. Fundam Appl Limnol 176(1):61–73. doi: 10.1127/1863-9135/2010/0176-0061 CrossRefGoogle Scholar
  68. 68.
    Ruse L (2010) Classification of nutrient impact on lakes using the chironomid pupal exuvial technique. Ecol Indic 10(3):594–601. doi: 10.1016/j.ecolind.2009.10.002 CrossRefGoogle Scholar
  69. 69.
    Ferrington L, Blackwood MA, Wright C, Crisp N, Kavanaugh J, Schmidt FJ (1991) A protocol for using surface floating pupal exuviae of chironomidae for rapid bioassessment changing water quality. In: Peters NEW, Wallng DE (eds) Sediment and stream quality in a changing environment: trends and explanation, vol 203. IAHS, Oxfordshire, pp 181–190Google Scholar
  70. 70.
    Sànchez-Millaruelo N, Cañedo-Argüelles M, Rieradevall M (2009) Avaluació de la biodiversitat i l’estat ecològic de les llacunes i canals del Delta del Llobregat mitjançant l’ús de les exúvies de quironòmids com a bioindicadors. In: 5enes Jornades d’Estudi del Patrimoni del Baix Llobregat: Patrimoni en un entorn metropolità. Consell Comarcal del Baix Llobregat, pp 83–88Google Scholar
  71. 71.
    Langton PH, Visser H (2003) Chironomidae exuviae. a key to pupal exuviae of the West Palaearctic Region. ETI/ STOWA/RIZA, ISBN 90-75000-50-2Google Scholar
  72. 72.
    Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366. doi: 10.2307/2963459 Google Scholar
  73. 73.
    Lucena JR, Hurtado J, Comin FA (2002) Nutrients related to the hydrologic regime in the coastal lagoons of Viladecans (NE Spain). Hydrobiologia 475(1):413–422. doi: 10.1023/a:1020303828715 CrossRefGoogle Scholar
  74. 74.
    Fennessy MS, Jacobs AD, Kentula ME (2004) Review of rapid methods for assessing wetland condition, U.S.Google Scholar
  75. 75.
    Petersen RC (1992) The RCE: a Riparian, Channel and Environmental Inventory for small streams in the agricultural landscape. Freshw Biol 27(2):295–306. doi: 10.1111/j.1365-2427.1992.tb00541.x CrossRefGoogle Scholar
  76. 76.
    Munné A, Prat N, Sola C, Bonada N, Rieradevall M (2003) A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat Conserv 13(2):147–163. doi: 10.1002/aqc.529 CrossRefGoogle Scholar
  77. 77.
    Furniss P, Lane A (1992) Practical conservation: water and wetlands. Hodder & Stougton, LondonGoogle Scholar
  78. 78.
    Britton RH, Crivelli AJ (1993) Wetlands of southern Europe and North Africa: Mediterranean wetlands. In: Whigham DF, Dykjová D (eds) Wetlands of the world I: inventory, ecology and management. Kluwer, Dordrecht, pp 129–194CrossRefGoogle Scholar
  79. 79.
    Curcó A (1996) La vegetación del Delta del Ebro (III): las comunidades acuàticas de hidrófitos (Clases Lemnetea minoris y Potametea). Documents Phytosociologiques (N.S.) 16:273–291Google Scholar
  80. 80.
    Bartoldus CC (1999) A comprehensive review of wetland assessment procedures: a guide for wetland practitioners, St. Michaels MDGoogle Scholar
  81. 81.
    Williams P, Biggs J, Whitfield M, Thorne A, Bryant S, Fox G, Nicolet P (1999) The pond book. A guide to the management and creation of ponds. Ponds Conservation Trust, OxfordGoogle Scholar
  82. 82.
    EU (2003) Horizontal guidance document on the role of wetlands in the water framework directive. European UnionGoogle Scholar
  83. 83.
    Chapman VJ (1974) Salt marshes and salt deserts of the world. J. Crahmer, LehreCrossRefGoogle Scholar
  84. 84.
    Folch R (1986) La vegetació dels Països Catalans. Ketres editora, BarcelonaGoogle Scholar
  85. 85.
    Grillas P, Gauthier P, Yaverkovski N, Perennou C (2004) Mediterranean temporary pools, vol 1. Issues relating to conservation, functioning and management. Le SambucGoogle Scholar
  86. 86.
    Figueroa R, Suarez ML, Andreu A, Ruiz VH, Vidal-Abarca MR (2009) Wetlands ecological characterization of central chile semi-dry area. Gayana 73(1):76–94Google Scholar
  87. 87.
    Ruhí A, San Sebastian O, Feo C, Franch M, Gascón S, Richter-Boix A, Boix D, Llorente G (2012) Man-made Mediterranean temporary ponds as a tool for amphibian conservation. Ann Limnol Int J Limnol 48(1):81–93. doi: 10.1051/limn/2011059 CrossRefGoogle Scholar
  88. 88.
    Della Bella V, Mancini L (2009) Freshwater diatom and macroinvertebrate diversity of coastal permanent ponds along a gradient of human impact in a Mediterranean eco-region. Hydrobiologia 634(1):25–41. doi: 10.1007/s10750-009-9890-x CrossRefGoogle Scholar
  89. 89.
    Gascón S, Boix D, Sala J (2009) Are different biodiversity metrics related to the same factors? A case study from Mediterranean wetlands. Biol Conserv 142(11):2602–2612. doi: 10.1016/j.biocon.2009.06.008 CrossRefGoogle Scholar
  90. 90.
    Gascón S, Machado M, Sala J, da Fonseca LC, Cristo M, Boix D (2012) Spatial characteristics and species niche attributes modulate the response by aquatic passive dispersers to habitat degradation. Mar Freshw Res 63(3):232–245. doi: 10.1071/mf11160 CrossRefGoogle Scholar
  91. 91.
    Brown KS (1998) Ecology – vanishing pools taking species with them. Science 281(5377):626CrossRefGoogle Scholar
  92. 92.
    Diaz-Paniagua C, Fernandez-Zamudio R, Florencio M, Garcia-Murillo P, Gomez-Rodriguez C, Portheault A, Serrano L, Siljestrom P (2010) Temporary ponds from Donana National Park: a system of natural habitats for the preservation of aquatic flora and fauna. Limnetica 29(1):41–58Google Scholar
  93. 93.
    Rhazi L, Grillas P, Saber ER, Rhazi M, Brendonck L, Waterkeyn A (2012) Vegetation of Mediterranean temporary pools: a fading jewel? Hydrobiologia 689(1):23–36. doi: 10.1007/s10750-011-0679-3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xavier D. Quintana
    • 1
    Email author
  • Miguel Cañedo-Argüelles
    • 2
  • Alfonso Nebra
    • 3
  • Stéhanie Gascón
    • 1
  • Maria Rieradevall
    • 4
  • Nuno Caiola
    • 3
  • Jordi Sala
    • 1
  • Carles Ibàñez
    • 3
  • Núria Sánchez-Millaruelo
    • 4
  • Dani Boix
    • 1
  1. 1.GRECO, Institute of Aquatic EcologyUniversity of GironaGironaSpain
  2. 2.Department of Environmental Sciences and Food IndustriesUniversity of VicBarcelonaSpain
  3. 3.IRTA Aquatic EcosystemsSant Carles de la RàpitaSpain
  4. 4.Department of Ecology and IRBio, Research group F.E.M. (Freshwater Ecology and Management), Institut de Recerca de Biodiversitat)University of BarcelonaBarcelonaSpains

Personalised recommendations