Skip to main content

Conventional and New Processes for Urban Wastewater Disinfection: Effect on Emerging and Resistant Microorganisms

  • Chapter
  • First Online:
Advanced Treatment Technologies for Urban Wastewater Reuse

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 45))

Abstract

The continuous release of chemical and microbiological pollutants into the environment and the increasing demand for safe water call for effective water and wastewater treatment processes. In particular, the detection of resistant microorganisms (e.g. antibiotic-resistant bacteria) in the effluents of urban wastewater treatment plants disposed into surface water or reused (e.g. in crop irrigation) shows that conventional treatments and disinfection processes do not effectively control the spread of pathogens into the environment. There is a need for new and more effective disinfection processes and technologies. The aim of this chapter is to briefly describe some of the emerging and antimicrobial-resistant microorganisms detected in wastewater, as well as the conventional and new advanced available technologies for wastewater disinfection, and to evaluate and discuss their effect on these microorganisms. Moreover, regulations and policies on wastewater reuse are also critically discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOP:

Advanced oxidation process

ARB:

Antibiotic-resistant bacteria

ARG:

Antibiotic-resistant gene

HAV:

Hepatitis A virus

HEV:

Hepatitis E virus

NDT:

N-doped TiO2

USEPA:

US Environmental Protection Agency

WHO:

World Health Organisation

WWTP:

Urban wastewater treatment plant

References

  1. WHO (2014) Antimicrobial resistance global report on surveillance. ISBN: 978-92-4-156474-8

    Google Scholar 

  2. USEPA (2012) Guidelines for water reuse. National Risk Management Research Laboratory Office of Research and Development Cincinnati, Ohio. EPA/600/R-12/618

    Google Scholar 

  3. WHO (2006) Guidelines for the safe use of wastewater, excreta and grey. Geneva. ISBN: 92-4-154686-7

    Google Scholar 

  4. RD1620/2007. Spanish Ministry of Environment. Guía para la aplicación del R.D. 1620/2007 por el que se establece el Régimen Jurídico de la Reutilización de las Aguas Depuradas (2010) Ministerio de Medio Ambiente y Medio Marino y Rural, p 145. ISBN: 978-84-491-0998

    Google Scholar 

  5. ACWUA, Seder N, Abdel-Jabbar S (2011). Safe use of treated wastewater in agriculture Jordan case study. Arab Countries Water Utilities Association

    Google Scholar 

  6. Australian Guidelines for Water Recycling (2006) Managing health and environmental risks. ISBN: 1-921173-06-8

    Google Scholar 

  7. South Africa Guidelines (2011) Annexure D: national strategy for water reuse, national water resource strategy June 2011 Water Affairs. Department: Water Affairs Republic of South Africa

    Google Scholar 

  8. USEPA (2012) Guidelines for water reuse. US Environmental Protection Agency Office of Wastewater Management, Office of Water. Washington DC, EPA/600/R-12/618

    Google Scholar 

  9. Kundu A, McBride G, Wuertz S (2013) Adenovirus-associated health risks for recreational activities in a multi-use coastal watershed based on site-specific quantitative microbial risk assessment. Water Res 47(16):6309–6325

    Article  CAS  Google Scholar 

  10. Hewitt J, Greening GE, Leonard M et al (2013) Evaluation of human adenovirus and human polyomavirus as indicators of human sewage contamination in the aquatic environment. Water Res 47:6750–6761

    Article  CAS  Google Scholar 

  11. Haramoto E, Kitajima M, Katayama H et al (2010) Real-time PCR detection of adenoviruses, polyomaviruses, and torque teno viruses in river water in Japan. Water Res 44(6):1747–1752

    Article  CAS  Google Scholar 

  12. Metcalf DS, Costa MC, Dew WMV, Weese JS (2010) Clostridium difficile in vegetables, Canada. Lett Appl Microbiol 51:600–602

    Article  CAS  Google Scholar 

  13. Romano V, Pasquale V, Krovacek K et al (2012) Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in Southern Switzerland. Appl Environ Microbiol 78(18):6643–6650

    Article  CAS  Google Scholar 

  14. Zhang M, Zhao H, Yang J et al (2010) Detection and quantification of enteroviruses in coastal seawaters from Bohai Bay, Tianjin, China. J Environ Sci 22(1):150–154

    Article  Google Scholar 

  15. Vivier JC, Ehlers MM, Grabow WOK (2004) Detection of enteroviruses in treated drinking water. Water Res 38(11):2699–2705

    Article  CAS  Google Scholar 

  16. Allmann E, Pan L, Li L et al (2013) Presence of enteroviruses in recreational water in Wuhan, China. J Virol Methods 193(2):327–331

    Article  CAS  Google Scholar 

  17. Battistone A, Buttinelli G, Bonomo P et al (2014) Detection of enteroviruses in influent and effluent flow samples from wastewater treatment plants in Italy. Food Environ Virol 6:13–22

    Article  Google Scholar 

  18. Ayaz ND, Gencay YE, Erol I (2014) Prevalence and molecular characterization of sorbitol fermenting and non-fermenting Escherichia coli O157:H7+/H7– isolated from cattle at slaughterhouse and slaughterhouse wastewater. Int J Food Microbiol 174:31–38

    Article  CAS  Google Scholar 

  19. Ferens WA, Hovde CJ (2011) Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 8(4):465–487

    Article  Google Scholar 

  20. Twing KI, Kirchman DL, Campbell BJ (2011) Temporal study of Helicobacter pylori presence in coastal freshwater, estuary and marine waters. Water Res 45:1897–1905

    Article  CAS  Google Scholar 

  21. Linke S, Lenz J, Gemein S et al (2010) Detection of Helicobacter pylori in biofilms by real-time PCR. Int J Hyg Environ Health 213(3):176–182

    Article  CAS  Google Scholar 

  22. Yang N, Ho Chu DL, Lai Wong MM et al (2011) Major human Hepatitis A virus genotype in Hong Kong marine waters and detection by real time PCR. Mar Pollut Bull 62(12):2654–2658

    Article  CAS  Google Scholar 

  23. Prado T, Fumian TM, Miagostovich MP, Gaspar AC (2012) Monitoring the hepatitis A virus in urban wastewater from Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg 106(2):104–109

    Article  Google Scholar 

  24. La Rosa G, Pourshaban M, Iaconelli M et al (2010) Molecular detection of hepatitis e virus in sewage samples. Appl Environ Microbiol 76(17):5870–5873

    Article  Google Scholar 

  25. Masclaux FG, Hotz P, Friedli D et al (2013) High occurrence of hepatitis E virus in samples from wastewater treatment plants in Switzerland and comparison with other enteric viruses. Water Res 47:5101–5109

    Article  CAS  Google Scholar 

  26. WHO (2008) Guidelines for drinking-water quality, 3rd edn, vol 1, p 173. ISBN: 978-92-4-154761-1

    Google Scholar 

  27. Tung MC, Chang TY, Hsu BM et al (2013) Seasonal distribution of Legionella spp. and L. pneumophila in a river in Taiwan evaluated with culture-confirmed and direct DNA extraction methods. J Hydrol 496:100–106

    Article  CAS  Google Scholar 

  28. Leoni E, De Luca G, Legnani PP et al (2005) Legionella waterline colonization: detection of Legionella species in domestic, hotel and hospital water systems. J Appl Microbiol 98:373–379

    Article  CAS  Google Scholar 

  29. Lapidot A, Yaron S (2009) Transfer of Salmonella enterica serovar typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Protect 72(3):618–623

    Google Scholar 

  30. Sinton L, Hall C, Braithwaite R (2007) Sunlight inactivation of Campylobacter jejuni and Salmonella enterica, compared with Escherichia coli, in seawater and river water. J Water Health 5(3):357–365

    Article  Google Scholar 

  31. Espigares E, Bueno A, Espigares M et al (2006) Isolation of Salmonella serotypes in wastewater and effluent: effect of treatment and potential risk. Int J Hyg Environ Health 209:103–107

    Article  CAS  Google Scholar 

  32. Cheng GL, Yeh TN, Li S et al (2005) Molecular epidemiological study of outbreaks of Shigella sonnei infection between 1995–2003 in Taiwan. Epidemiol Bull 21:323–347

    Google Scholar 

  33. Huang IF, Chiu CH, Wang MH et al (2005) Outbreak of dysentery associated with ceftriaxone-resistant Shigella sonnei: first report of plasmid-mediated CMY-2-type AmpC b-lactamase resistance in S. sonnei. J Clin Microbiol 43:2608–2612

    Article  CAS  Google Scholar 

  34. O’Reilly CE, Bowen AB, Perez NE et al (2007) A waterborne outbreak of gastroenteritis with multiple etiologies among resort island visitors and residents: Ohio, 2004. Clin Infect Dis 44:506–512

    Article  Google Scholar 

  35. Webby RJ, Carville KS, Kirk MD et al (2007) Internationally distributed frozen oyster meat causing multiple outbreaks of norovirus infection in Australia. Clin Infect Dis 44:1026–1031

    Article  CAS  Google Scholar 

  36. Sinclair RG, Jones EL, Gerba CP (2009) Viruses in recreational water-borne disease outbreaks: a review. J Appl Microbiol 107(6):1769–1780

    Article  CAS  Google Scholar 

  37. Goncalves G, Gouveia E, Mesquita JR et al (2011) Outbreak of acute gastroenteritis caused by adenovirus type 41 in a kindergarten. Epidemiol Infect 139(11):1672–1675

    Article  CAS  Google Scholar 

  38. Wasley A, Fiore A, Bell BP (2006) Hepatitis A in the era of vaccination. Epidemiol Rev 28:101–111

    Article  Google Scholar 

  39. Nainan OV, Xia V, Vaughan G, Margolis HS (2006) Diagnosis of hepatitis A virus infection: a molecular approach. Clin Microbiol Rev 19:63–79

    Article  CAS  Google Scholar 

  40. CDC (2014) US centers for disease control and prevention. http://www.cdc.gov

  41. USEPA (2014) http://water.epa.gov/drink/contaminants/basicinformation/ecoli.cfm

  42. Barbut F, Petit JC (2001) Epidemiology of Clostridium difficile-associated infections. Clin Microbiol Infect 7:405–410

    Article  CAS  Google Scholar 

  43. Zidaric V, Beigot S, Lapajne S et al (2010) The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 16:371–375

    Article  Google Scholar 

  44. Molmeret M, Horn M, Wagner M et al (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71(1):20–28

    Article  CAS  Google Scholar 

  45. Bodet C, Sahr T, Dupuy M et al (2012) Legionella pneumophila transcriptional response to chlorine treatment. Water Res 46(3):808–816

    Article  CAS  Google Scholar 

  46. Rizzo L, Manaia C, Merlin C et al (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    Article  CAS  Google Scholar 

  47. Varela AR, Ferro G, Vredenburg J et al (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161

    Article  Google Scholar 

  48. Eriksson J, Espinosa-Gongora C, Stamphøj I et al (2013) Carriage frequency, diversity and methicillin resistance of Staphylococcus aureus in Danish small ruminants. Vet Microbiol 163(1–2):110–115

    Article  CAS  Google Scholar 

  49. Kamal RM, Bayoumi MA, Abdel Aal SFA (2013) MRSA detection in raw milk, some dairy products and hands of dairy workers in Egypt, a mini-survey. Food Control 33(1):49–53

    Article  CAS  Google Scholar 

  50. Rosenberg GRE, Micallef SA, Gibbs SG et al (2014) Detection of vancomycin-resistant enterococci (VRE) at four US wastewater treatment plants that provide effluent for reuse. Sci Total Environ 466–467:404–411

    Article  Google Scholar 

  51. Börjesson S, Melin S, Matussek A et al (2009) A seasonal study of the mecA gene and Staphylococcus aureus including methicillin-resistant S. aureus in a municipal wastewater treatment plant. Water Res 43:925–932

    Article  Google Scholar 

  52. Rosenberg GRE, Micallef SA et al (2012) Methicillin-resistant Staphylococcus aureus (MRSA) detected at four US wastewater treatment plants. Environ Health Perspect 120(11):1551–1558

    Article  Google Scholar 

  53. Levin-Edens E, Bonilla N, Scott Meschke J, Roberts MC (2011) Survival of environmental and clinical strains of methicillin-resistant Staphylococcus aureus [MRSA] in marine and fresh waters. Water Res 45(17):5681–5686

    Article  CAS  Google Scholar 

  54. Novais C, Coque TM, Ferreira H et al (2005) Environmental contamination with vancomycin-resistant enterococci from hospital sewage in Portugal. Appl Environ Microbiol 71:3364–3368

    Article  CAS  Google Scholar 

  55. Reungoat J, Escher BI, Macova M et al (2012) Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Res 46:863–872

    Article  CAS  Google Scholar 

  56. Huang JJ, Hu HY, Tang F et al (2011) Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant. Water Res 45:2775–2781

    Article  CAS  Google Scholar 

  57. Lee H, Lee E, Lee C, Lee K (2011) Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation. J Ind Eng Chem 17(3):468–473

    Article  CAS  Google Scholar 

  58. Guo MT, Yuan QB, Yang J (2013) Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant. Water Res 47:6388–6394

    Article  CAS  Google Scholar 

  59. Rizzo L, Fiorentino A, Anselmo A (2012) Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream. Sci Total Environ 427–428:263–268

    Article  Google Scholar 

  60. Rizzo L, Fiorentino A, Anselmo A (2013) Advanced treatment of urban wastewater by UV radiation: effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere 92:171–176

    Article  CAS  Google Scholar 

  61. Öncü NB, Menceloğlu YZ, Balcıoğlu IA (2011) Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution. J Adv Oxid Technol 14:196–203

    Google Scholar 

  62. Huang JJ, Hu HY, Wu YH et al (2013) Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere 90:2247–2253

    Article  CAS  Google Scholar 

  63. Katayama H, Haramoto E, Oguma K et al (2008) One-year monthly quantitative survey of noroviruses, enteroviruses, and adenoviruses in wastewater collected from six plants in Japan. Water Res 42:1441–1448

    Article  CAS  Google Scholar 

  64. Grabow WOK, van Zyl M, Prozesky OW (1976) Behaviour in conventional sewage purification processes of coliform bacteria with transferable or non-transferable drug-resistance. Water Res 10(8):717–723

    Article  CAS  Google Scholar 

  65. Templeton MR, Oddy F, Leung WK, Rogers M (2009) Chlorine and UV disinfection of ampicillin-resistant and trimethoprim-resistant E. coli. Can J Civl Eng 36:889–894

    Article  CAS  Google Scholar 

  66. Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–693

    Article  CAS  Google Scholar 

  67. Carey CM, Lee H, Trevors JT (2004) Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst. Water Res 38:818–862

    Article  CAS  Google Scholar 

  68. Hsu BM, Yeh HH (2003) Removal of Giardia and Cryptosporidium in drinking water treatment: a pilot-scale study. Water Res 37:1111–1117

    Article  CAS  Google Scholar 

  69. Nikolaou A, Rizzo L, Hüseyin S (2006) Control of disinfection by-products in drinking water systems. Nova, New York

    Google Scholar 

  70. USEPA (1999) Alternative disinfectants and oxidants guidance manual. Office of Water, EPA 815-R-99-014

    Google Scholar 

  71. Selma MV, Beltrán D, Allende A et al (2007) Elimination by ozone of Shigella sonnei in shredded lettuce and water. Food Microbiol 24:492–499

    Article  CAS  Google Scholar 

  72. Guo MT, Yuan QB, Yang J (2013) Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 93:2864–2868

    Article  CAS  Google Scholar 

  73. Mckinney CW, Pruden A (2012) Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol 46:13393–13400

    Article  CAS  Google Scholar 

  74. Auerbach EA, Seyfried EE, McMahon KD (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41:1143–1151

    Article  CAS  Google Scholar 

  75. Francy DS, Stelzer EA, Bushon RN et al (2012) Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Water Res 46:4164–4178

    Article  CAS  Google Scholar 

  76. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  77. Venieri D, Markogiannaki E, Chatzisymeon E et al (2013) Inactivation of Bacillus anthracis in water by photocatalytic, photolytic and sonochemical treatment. Photochem Photobiol Sci 12:645–652

    Article  CAS  Google Scholar 

  78. Cengiz M, Uslu MO, Balcioglu I (2010) Treatment of E. coli HB101 and the tetM gene by Fenton’s reagent and ozone in cow manure. J Environ Manage 91:2590–2593

    Article  CAS  Google Scholar 

  79. Hoffmann MR, Martín ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–78

    Article  CAS  Google Scholar 

  80. Ryu H, Gerrity D, Crittenden JC, Abbaszadegan M (2008) Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation. Water Res 42(6–7):1523–1530

    Article  CAS  Google Scholar 

  81. Rincón AG, Pulgarin C (2005) Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater. Catal Today 101(3–4):331–344

    Article  Google Scholar 

  82. Armon R, Weitch-Cohen G, Bettane M (2004) Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis. Water Sci Technol Water Supp 4(2):7–14

    CAS  Google Scholar 

  83. Rizzo L, Sannino D, Vaiano V et al (2014) Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Appl Catal B Environ 144:369–378

    Article  CAS  Google Scholar 

  84. Hamal DB, Haggstrom JA, Marchin GL et al (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) co-doped with silver, carbon, and sulphur. Langmuir 26(4):2805–2810

    Article  CAS  Google Scholar 

  85. Michael I, Hapeshi E, Michael C et al (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634

    Article  CAS  Google Scholar 

  86. Agulló-Barceló M, Polo-López MI, Lucena F et al (2013) Solar advanced oxidation processes as disinfection tertiary treatments for real wastewater: implications for water reclamation. Appl Catal B Environ 136–137:341–350

    Article  Google Scholar 

  87. Cho M, Gandhi V, Hwang TM et al (2011) Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine. Water Res 45(3):1063–1070

    Article  CAS  Google Scholar 

  88. Shang C, Cheung LM, Liu W (2007) MS2 coliphage inactivation with UV irradiation and free chlorine/monochloramine. Environ Eng Sci 24(9):1321–1332

    Article  CAS  Google Scholar 

  89. Bandala ER, Corona-Vasquez B, Guisar R et al (2009) Deactivation of highly resistant microorganisms in water using solar driven photocatalytic processes. Int J Chem React Eng 7(1):1–16

    Google Scholar 

Download references

Acknowledgements

Giovanna Ferro wishes to thank the University of Salerno for funding the projects “Trattamento avanzato di acque reflue urbane mediante fotocatalisi: effetto sui batteri resistenti agli antibiotici.” (Ex 60%, anno 2012) and the funding of the European Commission under the SFERA grant (Solar Facilities for the European Research Area project. Contract no. 228296). PFI and MIPL wish to thank the Spanish Ministry of Science and Innovation for the financial support under the WATER4CROP project (reference: CTQ2014-54563-C3-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fernández-Ibáñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferro, G., Polo-López, M.I., Fernández-Ibáñez, P. (2015). Conventional and New Processes for Urban Wastewater Disinfection: Effect on Emerging and Resistant Microorganisms. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Advanced Treatment Technologies for Urban Wastewater Reuse . The Handbook of Environmental Chemistry, vol 45. Springer, Cham. https://doi.org/10.1007/698_2015_390

Download citation

Publish with us

Policies and ethics