Skip to main content

Constructed Wetlands Integrated with Advanced Oxidation Processes in Wastewater Treatment for Reuse

  • Chapter
  • First Online:
Advanced Treatment Technologies for Urban Wastewater Reuse

Abstract

The development of integrated systems for wastewater treatment has been investigated in recent years not only for the improvement of control parameters but also to allow the routine reuse of wastewater to be effectively implemented. Several studies also seek to add processes that may reuse by-products, energy, and unit operations in a single integrated remediation unit. Considering the sustainability scenario, all these processes should be designed and controlled with description of scope, mass inventory, and energy demand in order to establish indexes of environmental pressure. Classical publications of books and articles for wastewater treatment have already described to more than 10 years several procedures and standards for reuse (direct or indirect), segregation at source, required treatment levels, groundwater recharge, combination of remediation processes, logistics, and sanitation. In this case, further investigation to decentralized systems, such as reed bed filters, with reduced costs of implementation and operation is required, as well as the simplicity of units to be installed. This tendency of integrated phytoremediation systems supports the growing interest for the combination of a system already considered classic in wastewater treatment, the constructed wetlands (CWs), with advanced oxidation processes (AOPs), particularly the photocatalysis with direct or indirect use of solar energy. Because of its already reported disinfection and detoxification potentials which might enable the reuse of urban wastewaters for some specific purposes, the photocatalytic treatment was selected for a study of case. So, this chapter covers the phenological aspects of a macrophyte still little used in phytoremediation, the Hymenachne grumosa; the evolution of the combined use of Upflow Anaerobic Sludge Blanket systems (UASB) + CWs; and the integration of the processes UASB + CWs + UV /TiO2/O3 with indirect use of solar energy in photoreactors designed for these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eckenfelder WW (2000) Industrial water pollution control. McGraw-Hill, New York, pp 1–400

    Google Scholar 

  2. Tchobanoglous G, Burton FL, Stensel HD (2002) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, New York, pp 1–1771

    Google Scholar 

  3. Metcalf & Eddy Inc., an AECOM Company, Asano T, Burton F, Leverenz H, Tsuchihashi R, Tchobanoglous G (2007) Water reuse: issues, technologies, and applications. McGraw-Hill, New York, pp 1–1541

    Google Scholar 

  4. Gray NF (2010) Water technology: an introduction for environmental scientists and engineers. IWA, London, pp 1–747

    Google Scholar 

  5. Urkiaga AL, de las Fuentes BB, Chiru E et al (2006) Methodologies for feasibility studies related to wastewater reclamation and reuse projects. Desalination 187(1–3):263–269. doi:10.1016/j.desal.2005.04.085

    Article  CAS  Google Scholar 

  6. EPA, Environmental Protection Agency (2012) Guidelines for water reuse EPA/600/R-12/618

    Google Scholar 

  7. Loos R, Carvalho R, Comero S et al (2012) EU wide monitoring survey on waste water treatment plant effluents. Publications Office of the European Union, Luxembourg

    Google Scholar 

  8. Avila C, Reyes C, Bayona JM, Bayona JM (2013) Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. Water Res 47(1):315–325. doi:10.101016/j.watres.2012.10.005

    Article  CAS  Google Scholar 

  9. Herrera-Melián JA, Araña J, Ortega JA et al (2008) Comparative study of phenolics degradation between biological and photocatalytic systems. J Sol Energy Eng 130(4):041003–041010. doi:10.1115/1.2969800

    Article  Google Scholar 

  10. Lofrano G, Meriç S, Zengin GE et al (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461–462:265–281. doi:10.1016/j.scitotenv.2013.05.004

    Article  Google Scholar 

  11. Parra S, Malato S, Pulgarin C (2002) New integrated photocatalytic-biological flow system using supported TiO2 and fixed bacteria for the mineralization of isoproturon. Appl Catal B Environ 36(2):131–144. doi:10.1016/S0926-3373(01)00293-4

    Article  CAS  Google Scholar 

  12. Silva AMT, Zilhão NR, Segundo RA et al (2012) Photo-Fenton plus Solanum nigrum L. Weed plants integrated process for the abatement of highly concentrated metalaxyl on waste waters. Chem Eng J 184:213–220. doi:10.1016/j.cej.2012.01.038

    Article  CAS  Google Scholar 

  13. Pariente MI, Siles JA, Molina R et al (2013) Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors. Chem Eng J 226:409–415. doi:10.1016/j.cej.2013.04.081

    Article  CAS  Google Scholar 

  14. Carvalho PN, Araújo JL, Mucha AP et al (2013) Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater. Bioresour Technol 134:412–416

    Article  CAS  Google Scholar 

  15. Verhoeven JTA, Meuleman AFM (1999) Wetlands for wastewater treatment: opportunities and limitations. Ecol Eng 12(1–2):5–12. doi:10.1016/S0925-8574(98)00050-0

    Article  Google Scholar 

  16. Zhang DQ, Soon KT, Gersberg RM et al (2012) Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. J Environ Manage 96(1):1–6. doi:10.1016/j.jenvman.2011.10.009

    Article  Google Scholar 

  17. Corbella C, Garfí M, Puigagut J (2014) Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: surveying the optimal scenario for microbial fuel cell implementation. Sci Total Environ 470–471:754–758. doi:10.1016/j.scitotenv.2013.09.068

    Article  Google Scholar 

  18. Vymazal J (2013) Emergent plants used in free water surface constructed wetlands: a review. Ecol Eng 61:582–592. doi:10.1016/j.ecoleng.2013.06.023

    Article  Google Scholar 

  19. Kadlec RH, Knight RL (1996) Treatment wetlands. CRC, New York, pp 1–893

    Google Scholar 

  20. Silveira DS (2010) Estudos fenológicos da macrófita hymenachne grumosa na aplicação de sistemas alagados construídos (SACs) para o tratamento de efluentes secundários de campus universitário (Phenological studies of macrophyte Hymenachne grumosa in the application of constructed wetlands (CWs) for the treatment of secondary effluent campus. In 25° Brazilian Congress of Health and Environmental Engineering). Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil, p 1–103

    Google Scholar 

  21. Brasil MS, Matos AT, Soares AA (2007) Planting and fenological performance of Thypha sp. Used in the domestic wastewater treatment under constructed wetland system. Eng Sanit Ambient 12(3):266–272

    Article  Google Scholar 

  22. Abrahão SS (2006) Tratamento de água residuária de laticínios em sistemas alagados construídos cultivados com forrageiras, Universidade Federal de Viçosa, (Wastewater treatment dairy in constructed wetland systems cultivated with forage, Federal University of Viçosa),Viçosa, Brazil, p 1–110

    Google Scholar 

  23. Freitas NCW (2008) Tratamento de efluente de campus universitário via sistema de baixo custo com leitos cultivados (Treatment campus effluent via low-cost system with wetlands), Master of Environmental Technology, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil, p 1–55

    Google Scholar 

  24. Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R et al (2010) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res 44:3669–3678

    Article  CAS  Google Scholar 

  25. de la Varga D, Díaz MA, Ruiz I et al (2013) Heavy metal removal in an UASB-CW system treating municipal wastewater. Chemosphere 93:1317–1323

    Article  Google Scholar 

  26. Sousa JT, van Haandel A, Lima EPC et al (2004) Use of constructed wetland for the post-treatment of domestic sewage anaerobic effluent from UASB reactor. Eng Sanit Ambient 9(4):285–290

    Article  Google Scholar 

  27. Bevilacqua PD, Bastos RKX, Calijuri ML et al (2009) Remoção de ovos de helmintos em wetlands construídos. In 25° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL (Helminth eggs removal in constructed wetlands. In 25° Brazilian Congress of Health and Environmental Engineering). Recife, Brazil: ABES, p 1–8

    Google Scholar 

  28. Murray-Gulde C, Heatley JE, Karanfil T et al (2003) Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water. Water Res 37(3):705–713. doi:10.1016/S0043-1354(02)00353-6

    Article  CAS  Google Scholar 

  29. Araña J, Garriga i Cabo C, Fernández Rodríguez JA (2008) Combining TiO2-photocatalysis and wetland reactors for the efficient treatment of pesticides. Chemosphere 71(4):788–794. doi:10.1016/j.chemosphere.2007.10.008

    Article  Google Scholar 

  30. Antoniadis A, Takavakoglou V, Zalidis G et al (2007) Development and evaluation of an alternative method for municipal wastewater treatment using homogeneous photocatalysis and constructed wetlands. Catal Today 124(3–4):260–265. doi:10.1016/j.cattod.2007.03.044

    Article  CAS  Google Scholar 

  31. Grafias P, Xekoukoulotakis NP, Mantzavinos D et al (2010) Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Res 44(9):2773–2780. doi:10.1016/j.watres.2010.02.015

    Article  CAS  Google Scholar 

  32. Denny P (1997) Implementation of constructed wetlands in developing countries. Water Sci Technol 35(5):27–34. doi:10.1016/S0273-1223(97)00049-8

    Article  Google Scholar 

  33. Van Kaick, TS (2002) Estação de tratamento de esgoto por meio de zona de raízes: uma proposta de tecnologia apropriada para saneamento básico no litoral do Paraná (Sewage treatment plant through the root zone: a proposal of appropriate technology for basic sanitation in the coast of Paraná), Centro Federal de Educação Tecnológica do Paraná, Curitiba, Brazil, p 1–116

    Google Scholar 

  34. Vymazal J (2005) Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol Eng 25(5):478–490. doi:10.1016/j.ecoleng.2005.07.010

    Article  Google Scholar 

  35. Samsó R, García J (2013) Bacteria distribution and dynamics in constructed wetlands based on modelling results. Sci Total Environ 461–462:430–440. doi:10.1016/j.scitotenv.2013.04.073

    Article  Google Scholar 

  36. Sezerino PH, Reginatto V, Santos MA et al (2003) Nutrient removal from piggery effluent using vertical flow constructed wetlands in southern Brazil. Water Sci Technol 48(2):129–35

    CAS  Google Scholar 

  37. Saeed T, Sun G (2012) A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J Environ Manage 112:429–448. doi:10.1016/j.jenvman.2012.08.011

    Article  CAS  Google Scholar 

  38. Sun G, Austin D (2007) Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: evidence from a mass balance study. Chemosphere 68(6):1120–1128. doi:10.1016/j.chemosphere.2007.01.060

    Article  CAS  Google Scholar 

  39. Dornelas FL, de Paoli AC, Von Sperling M (2009) Avaliação de wetlands subsuperficiais como pós-tratamento de efluentes de reatores UASB. In 25° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL (Wetlands subsurface evaluation and post-treatment of UASB reactor effluent. In 25° Brazilian Congress of Health and Environmental Engineering). Recife, Brazil: ABES, p 1–8

    Google Scholar 

  40. Pereira AD, Belivacqua PD, Bastos RKX et al (2009) Qualidade microbiológica da biomassa produzida em um sistema de wetlands construídas. In 25° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL (Microbial biomass quality in a system constructed wetlands. In 25° Brazilian Congress of Health and Environmental Engineering). Recife, Brazil: ABES, p 1–8

    Google Scholar 

  41. Calijuri ML, Bastos RKX, Magalhaes TB, Capelete BC et al (2009) Domestic wastewater treatment in UASB-horizontal flow constructed wetlands systems: organic matter, solids, nutrients and coliforms removal. Eng Sanit Ambient 14(3):421–430

    Article  Google Scholar 

  42. Lourenço AM (2008) Desinfeccção de efluente secundário do sistema uasb+wetland por fotoozonização catalítica (Disinfection of secondary effluent of UASB + wetland system by photo catalytic ozonation), Master of Environmental Technology, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil, p 1–58

    Google Scholar 

  43. Hur J-S, Soon-Ok O, Kwang-Mi L et al (2005) Novel effects of TiO2 photocatalytic ozonation on control of postharvest fungal spoilage of kiwifruit. Postharvest Biol Technol 35(1):109–113. doi:10.1016/j.postharvbio.2004.03.013

    Article  CAS  Google Scholar 

  44. Litter MI (1999) Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B Environ 23(2–3):89–114. doi:10.1016/S0926-3373(99)00069-7

    Article  CAS  Google Scholar 

  45. Machado AP, Urbano L, Brito AG et al (2007) Life cycle assessment of wastewater treatment options for small and decentralized communities. Water Sci Technol 56(3):15–22

    Article  CAS  Google Scholar 

  46. Horn TB (2011) Integração de Sistemas Wetlands Construídos + Fotoozonização Catalítica no Tratamento de Efluentes de Campus Universitário (Systems Integration of Constructed Wetlands + Photocatalytic Ozonation for wastewater treatment from campus university), Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil, p 1–157

    Google Scholar 

  47. Lobo EA, Rathke FS, Brentano DM (2006) Ecotoxicologia aplicada: o caso dos produtores de tabaco na bacia hidrográfica do Rio Pardinho, RS, Brasil. In: Etges VE, Ferreira MAF (eds) A produção do tabaco: impacto no ecossistema e na saúde humana na região de Santa Cruz do Sul/RS. Santa Cruz do Sul: EDUNISC, p 41–68

    Google Scholar 

  48. ABNT, Associação Brasileira de Normas Técnicas (1997) Tanques sépticos – Unidades de tratamento complementar e disposição final dos efluentes líquidos – Projeto, construção e operação (Brazilian Association of Technical Standards – NBR 13969 – Septic tank – units for treatment and disposal of liquid effluents – project, construction and operation), Brazil, pp 1–60

    Google Scholar 

  49. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65. doi:10.1016/j.scitotenv.2006.09.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by the financial support from FAPERGS-Project PqG 02/11(11/1476-9) and CNPq (481620/2013-3). Also, authors want to thank CAPES for the scholarship granted. Carlos Alexandre Lutterbeck thanks the Brazilian “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) for their financial support (Grant Nr. 290136/2011-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ê. L. Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Machado, Ê.L. et al. (2015). Constructed Wetlands Integrated with Advanced Oxidation Processes in Wastewater Treatment for Reuse. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Advanced Treatment Technologies for Urban Wastewater Reuse . The Handbook of Environmental Chemistry, vol 45. Springer, Cham. https://doi.org/10.1007/698_2015_372

Download citation

Publish with us

Policies and ethics