Skip to main content

GIS-Based Software Platform for Managing Hydrogeochemical Data

  • Chapter
  • First Online:
Book cover Experiences from Ground, Coastal and Transitional Water Quality Monitoring

Abstract

A GIS-based software platform was developed to arrange all the available hydrogeochemical data into a comprehensive structure and provide support for its proper storage, management, analysis and interpretation. This platform is composed of a geospatial database and a set of analytical instruments integrated in a graphical user interface that coordinates its activities with several software. The geospatial database was specifically developed to store and manage organic and inorganic chemical records, as well as other physical parameters. The analytical tools cover a great range of methodologies for querying, comparing and interpreting groundwater quality parameters. This tools enable us to obtain automatically several calculations such as charge balance error and ionic ratios as well as calculations of various common hydrogeochemical diagrams (e.g. Schöeller-Berkaloff, Piper, Stiff) to which the spatial components are added. Moreover, it allows performing a complete statistical analysis of the data (e.g. generation of correlation matrix and bivariate analysis). Finally, this platform allows handling relevant auxiliary information in an efficient way, and it is coupled to a number of technologies such as hydrogeochemical modelling or geostatistical analysis. The software platform was used in a case study involving several urban aquifers located into the metropolitan area of Barcelona (Spain) to illustrate its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foster SSD (2001) The interdependence of groundwater and urbanization in rapidly developing cities. Urban Water 3(3):185–192

    Article  CAS  Google Scholar 

  2. Ketata M, Hamzaoui F, Gueddari M, Bouhlila R, Ribeiro L (2011) Hydrochemical and statistical study of groundwaters in Gabes-south deep aquifer (south-eastern Tunisia). Phys Chem Earth Parts A/B/C 36(5–6):187–196. doi:10.1016/j.pce.2010.02.006

    Article  Google Scholar 

  3. Navarro-Ortega A, Acuña V, Batalla RJ, Blasco J, Conde C, Elorza FJ, Elosegi A, Francés F, La-Roca F, Muñoz I, Petrovic M, Picó Y, Sabater S, Sanchez-Vila X, Schuhmacher M, Barceló D (2012) Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian basins. Environ Sci Pollut Res 19(4):918–933

    Article  Google Scholar 

  4. Mendizabal I, Stuyfzand PJ (2009) Guidelines for interpreting hydrochemical patterns in data from public supply well fields and their value for natural background groundwater quality determination. J Hydrol 379(1–2):151–163. doi:10.1016/j.jhydrol.2009.10.001

    Article  CAS  Google Scholar 

  5. Refsgaard J, Hojberg A, Moller I, Hansen M, Sondergaard V (2010) Groundwater modeling in integrated water resources management-visions for 2020. Ground Water 48:633–648

    Article  CAS  Google Scholar 

  6. Güler C, Thyne G, McCray J, Turner A (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474

    Article  Google Scholar 

  7. Zaporozec A (1972) Graphical interpretation of water quality data. Ground Water 10:32–43

    Article  Google Scholar 

  8. Morio M, Finkel M, Martac E (2010) Flow guided interpolation – a GIS-based method to represent contaminant concentration distributions in groundwater. Environ Model Software 25(12):1769–1780. doi:10.1016/j.envsoft.2010.05.018

    Article  Google Scholar 

  9. IBM (2015) SPSS software, IBM corporation. http://www-01.ibm.com/software/es/analytics/spss/products/statistics/. Accessed 20 Mar 2015

  10. Statsoft (2015) STATISTICA software. http://www.statsoft.com. Accessed 20 Mar 2015

  11. SAS (2015) SAS/STAT software, SAS Institute Inc. http://www.sas.com/en_us/software/analytics/stat.html. Accessed 20 Mar 2015

  12. StataCorpoLP (2015) STATA data analysis and statistical software, StataCorpoLP. www.stata.com. Accessed 20 Mar 2015

  13. Minitab (2015) Minitab 16 statistical software, Minitab Inc. http://www.minitab.com/es-mx/. Accessed 20 Mar 2015

  14. Systac (2008) Systat 13, Systact Software, a subsidiary of Cranes Software International Ltd. http://www.systat.com/. Accessed 20 Mar 2015

  15. Udina F (2005) XLS-BiPlot 1.1a User’s Manual (version 1.1a). Departament d’Economia i Empresa. Universitat Pompeu Fabra, Spain. http://tukey.upf.es/xls-biplot/users-manual/index.html. Accessed 20 Mar 2015

  16. USGS (2013) U.S. Geological Survey GW Chart version 1.25.3.0. http://water.usgs.gov/nrp/gwsoftware/GW_Chart/GW_Chart.html. Accessed 20 Dec 2014

  17. GHS (2013a) EASYQUIM. Developed in the Department of Geotechnical Engineering and Geosciences y Grupo de Hidrologia Subterránea (ETCG), UPC-CSIC, Barcelona. http://www.h2ogeo.upc.es/castellano/software.htm. Accessed 18 Sept 2013

  18. Molano (2011) Piper hydrogeochemical diagrams spreadsheets. https://sites.google.com/a/hidrogeocol.com.co/carlos_molano/. Accessed 19 Mar 2015

  19. ICOG (2011) INAQUAS, Ilustre Colegio Oficial de Geologos. http://www.icog.es/_portal/noticias/noticias.asp?bid=1133. Accessed 20 Dec 2014

  20. Rockware (2015) AqQA, Rockware Inc. http://www.rockware.com/product/overview.php?id=150. Accessed 19 Mar 2015

  21. LHA (2013) Logicels, Laboratoire d’Hydrogéologie d’Avignon, Université d’Avignon et des Pays de Vaucluse, France. http://www.lha.univ-avignon.fr/. Accessed 19 Mar 2015

  22. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3. A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods. U.S. Geological Survey, Denver, 497 pp

    Google Scholar 

  23. Schlumberger (2014) AQUACHEM, Schlumberger Limited. http://www.swstechnology.com. Accessed 20 Dec 2012

  24. StartPoint (2015) StartPoint Software Inc., 2015. http://www.pointstar.com/ChemPoint/default.aspx. Accessed 19 Mar 2015

  25. KWR (2011) HyCA KWR Watercycle Research Institute (Holland). http://www.kwrwater.nl/HyCA/. Accessed 20 Dec 2014

  26. Martin PH, Leboeuf EJ, Dobbins JP, Daniel EB, Abkowitz MD (2005) Interfacing GIS with water resource models: a state-of-the-art review. J Am Water Resour Assoc 41(6):1471–1487. doi:10.1111/j.1752-1688.2005.tb03813.x

    Article  Google Scholar 

  27. Gogu R, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS-based hydrogeological databases and groundwater modelling. Hydrogeol J 9(6):555–569. doi:10.1007/s10040-001-01673

    Article  Google Scholar 

  28. Gemitzi A, Tolikas D (2007) HYDRA model: simulation of salt intrusion in coastal aquifers using Visual Basic and GIS. Environ Model Software 22(7):924–936. doi:10.1016/j.envsoft.2006.03.007

    Article  Google Scholar 

  29. Steward D, Bernard E (2006) The synergistic powers of AEM and GIS geodatabase models in water resources studies. Ground Water 44(1):56–61

    Article  CAS  Google Scholar 

  30. Rahman MA, Rusteberg B, Gogu RC, Lobo-Ferreira JP, Sauter M (2012) A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. J Environ Manage 99:61–75. doi:10.1016/j.jenvman.2012.01.003.Aquaveo

    Article  Google Scholar 

  31. ArcHydro Groundwater tools Aquaveo LLC (2014). http://www.aquaveo.com/archydro-groundwater. Accessed 20 Dec 2014

  32. Strassberg G, Maidment DR, Jones NL (2007) A geographic data model for representing ground water systems. Ground Water 45(4):515–518. doi:10.1111/j.1745-6584.2007.00324.x

    Article  CAS  Google Scholar 

  33. ESRI (2013) ArcGIS 10x Environmental Systems Research Institute, Redlands, United States of America. http://www.esri.com/software/arcgis/arcgis-for-desktop. Accessed 03 June 2013

  34. Remy N, Boucher A, Wu J (2009) Applied geostatistic with SGems. Cambridge University Press, New York

    Book  Google Scholar 

  35. Deutsch C, Journel A (1998) GSLIB geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  36. Medina A, Carrera J (2003) Computational different type of data geostatistical inversion of coupled problems: dealing with computational burden and different types of data. J Hydrol 281(4):251–264

    Article  CAS  Google Scholar 

  37. Medina A, Alcolea A, Carrera J, Castro LF (2000) Flow and transport modelling in the geosphere: the code TRANSIN IV. IV Jornadas de Investigación y Desarrollo Tecnológico de Gestión de Residuos Redioactivos de ENRESA. Technical publication 9 (2000): 195–200

    Google Scholar 

  38. GHS (2013b) Visual Transin. Developed in the Department of Geotechnical Engineering and Geosciences y Grupo de Hidrologia Subterránea (ETCG), UPC-CSIC, Barcelona. http://www.h2ogeo.upc.es/castellano/software.htm. Accessed 18 Sept 2013

  39. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH version 2.0. U.S. Geological Survey Water-Resources Investigations report 94-4169

    Google Scholar 

  40. GHS (2013c) MIX. Developed in the Department of Geotechnical Engineering and Geosciences y Grupo de Hidrologia Subterránea (ETCG), UPC-CSIC, Barcelona. http://www.h2ogeo.upc.es/castellano/software.htm. Accessed 18 Sept 2013

  41. Ormsby T, Napoleon EJ, Robert B, Groess C (2010) Getting to know ArcGIS desktop. Esri, Redlands, USA, 592 pp

    Google Scholar 

  42. Wojda P, Brouyère S (2013) An object-oriented hydrogeological data model for groundwater projects. Environ Model Software 43:109–123. doi:10.1016/j.envsoft.2013.01.015

    Article  Google Scholar 

  43. Velasco V, Gogu R, Vázquez-Suñè E, Garriga A, Ramos E, Riera J, Alcaraz M (2012a) The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment. Environ Earth Sci. doi:10.1007/s12665-012-1898-2

  44. Velasco V (2013) GIS-based hydrogeological platform for sedimentary media. Ph.D. thesis, Universitat Politecnica de Catalunya, Barcelona

    Google Scholar 

  45. Velasco V, Tubau I, Vázquez-Suñè E, Gogu R, Gaitanaru D, Alcaraz M, Serrano-Juan A, Fernàndez-Garcia D, Garrido T, Fraile J, Sanchez-Vila X (2014) GIS-based hydrogeochemical analysis tools (QUIMET). Comput Geosci 70:164–180

    Article  CAS  Google Scholar 

  46. INSPIRE (2013) Infrastructure for spatial information in Europe. D.2.8.11.4. Data specification on Geology-Draft Technical Guidelines

    Google Scholar 

  47. ONEGeology (2013) ONEGeology project. www.onegeology.org. Accessed 11 Oct 2013

  48. National Groundwater Committee Working Group on National Groundwater Data Standards (1999) The Australian National Groundwater Data Transfer Standard Release 1.0. Camberra

    Google Scholar 

  49. WFD (2009) Commission, E. (n.d.). Common implementation strategy for the water framework directive (2000/60/EC). Guidance document n°22. Update guidance on implementing the geographical information system (GIS) elements of the EU Water Policy. Technical report-2009-028

    Google Scholar 

  50. Sen M, Duffy T (2005) GeoSciML: development of a generic geoscience markup language. Comput Geosci 31:1095–1103

    Article  Google Scholar 

  51. OGC (2012) OGC Water ML 2.0: part 1-timeseries.10-126r3

    Google Scholar 

  52. INSPIRE (2011) Infrastructure for spatial information in Europe. D2.9_V1.0. Guidelines for the use of observations & measurements and sensor web enablement-related standards in INSPIRE Annex II and III data specification development. http://inspire.ec.europa.eu/documents/Data_Specifications/D2.9_O&M_Guidelines_V1.0.pdf. Accessed 24 Apr 2015

  53. Farnham IM, Singh AK, Stetzenbach KJ, Johannesson KH (2002) Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemom Intell Lab Syst 60(1–2):265–281. doi:10.1016/S0169-7439(01)00201-5

    Article  CAS  Google Scholar 

  54. Stiff HA Jr (1951) The interpretation of chemical water analysis by means of patterns. J Petrol Tech 3(10):15. doi:10.2118/951376-G

  55. Lee TC (1998) A program for normalized stiff diagrams and quantification of grouping hydrochemical data. Comput Geosci 24(6):523–529

    Article  CAS  Google Scholar 

  56. Piper AM (1944) A graphic procedure in the geochemical interpretation of water‐analyses. Eos Trans Am Geophys Union 25(6):914–928

    Article  Google Scholar 

  57. Casas JM, Gratacós O, Liesa M, Muñoz JA, Sàbat F, Santanach P, Aranda J, Vàzquez E, Carrera J, Font-Capó J, Martínez A, Céspedes A, Riba O (2006) Doing geology in an urban area: Barcelona hills. In: Proceedings of the 5th European congress on regional geoscientific cartography and earth information and systems water, Barcelona, 13–16 Junio 2006, p 562

    Google Scholar 

  58. Pujades E, López A, Carrera J, Vázquez-Suñe E, Jurado A (2012) Barrier effect of underground structures on aquifers. Eng Geol 145–146:41–49. doi:10.1016/j.enggeo.2012.07.004

    Article  Google Scholar 

  59. Riba O, Colombo F (2009) Barcelona: La Ciutat Vella i el Poblenou. Assaig de geologia urbana. Barcelona, Institut d’Estudis Catalans i Reial Acadèmia de Ciències i Arts de Barcelona, 278pp

    Google Scholar 

  60. Casassas L, y Riba O (1992) Morfologia de la rambla Barcelonina. Treballs de la Societat Catalana de Geografia 33–34 (VII): 9–23

    Google Scholar 

  61. Velasco V, Cabello P, Vázquez-Suñè E, López-Blanco M, Ramos E, Tubau I (2012) A sequence stratigraphic based geological model for constraining hydrogeological modeling in the urbanized area of the Quaternary Besòs delta (NW Mediterranean coast, Spain). Geol Acta 10:373–394. doi:10.1344/105.000001757

    Google Scholar 

  62. Gàmez D (2007) Sequence stratigraphy as a tool for water resources management in alluvial coastal aquifers: application to the Llobregat delta (Barcelona, Spain). Doctoral thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, 177pp

    Google Scholar 

  63. Gámez D, Simó JA, Lobo FJ, Barnolas A, Carrera J, Vázquez-Suñé E (2009) Onshore-offshore correlation of the Llobregat deltaic system, Spain: development of deltaic geometries under different relative sea-level and growth fault influences. Sediment Geol 217:65–84

    Article  Google Scholar 

  64. ACA (2008) Desenvolupament d’un modelo hidrogeològic al Pla de Barcelona i Delta del Besòs per l’obtenció d’alternatives d’aprofitament per a la producción d’aigua de consum. (GHS;UPC-CSIC).Agència Catalana de l’Aigua, Provença 204, Barcelona, Spain

    Google Scholar 

  65. Tubau I, Vázquez-Suñé E, Carrera J, Gonzalez S, Petrovic M, Lopez de Alda M, Barceló D (2010) Occurrence and fate of alkylphenol polyethoxylate degradation products and linear alkylbenzene sulfonate surfactants in urban ground water: Barcelona case study. J Hydrol 383:102–110

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Velasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Velasco, V. et al. (2015). GIS-Based Software Platform for Managing Hydrogeochemical Data. In: Munné, A., Ginebreda, A., Prat, N. (eds) Experiences from Ground, Coastal and Transitional Water Quality Monitoring. The Handbook of Environmental Chemistry, vol 43. Springer, Cham. https://doi.org/10.1007/698_2015_368

Download citation

Publish with us

Policies and ethics