Reviewing Biological Indices and Biomarkers Suitability to Analyze Human Impacts. Emergent Tools to Analyze Biological Status in Rivers

  • Carlos BarataEmail author
  • Cinta Porte
  • Benjamín Piña
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 42)


The Catalan Water Agency has been testing and applying new methodologies and emergent tools over the last 20 years in order to enhance water quality monitoring in the Catalan River Basin District according to the EU Water Framework Directive (WFD) requirements. As a result the ecological quality of water bodies in Catalonia has been established and is currently monitored. Furthermore, bioremediation strategies are being implemented to improve the ecological quality of several water bodies. In relation to this the Catalan Water Agency is also devoted to assess and report to the EU that the applied remediation actions improved the quality of those water bodies. Most Mediterranean rivers suffer from water scarcity, and they are often located in densely populated areas. The combination of overpopulation with water scarcity translates into an overexploitation of water resources and consequently the deterioration of the ecological quality of rivers. Such deterioration in many places affects both the riparian habitat and water quality. Deterioration of water quality includes the reduction of water flow and the increase of pollution. Indeed in many occasions natural water flow is so low that effluents from wastewater treatment plants (WWTP) enter into the river with little dilution. Accordingly Mediterranean rivers are contaminated not only with persistent pollutants such as metals or persistent organic contaminants but also by pesticides, pharmaceuticals, personal care products, and other substances that, although they are not persistent, are continuously released into rivers from both diffuse sources and WWTP effluents. When this happens, the use of biomarkers and of laboratory or field toxicity assays offers the possibility to detect small changes in water quality, to identify detrimental stressors affecting aquatic biota, and to detect specific subtle effects such as those caused by endocrine disrupters. This chapter is structured in three main subchapters that address the suitability of biomarkers, in situ bioassays, and omic responses to assess effects of pollutants in river biota from Catalonian rivers.


Besós Biological indices Biomarkers Ebro Ecological status Field bioassays LLobregat Omic 



Biomonitoring studies have been funded by European, Spanish, and Catalan projects and FEDER funds along the last 20 years. Main projects involved are Biological Effects of Environmental Pollutants –BEEP EVK3-CT-2000-00025 (2001–2004), MCyT-REN2002-01709 (2002–2004); AQUATERRA Project no. 505428 (GOCE) (2004–2009); McyT CGL2004-03514 (2005–2007); MOVITROF (2006–2008); CEMUGA CGL2007- 64551/HID (2007–2011); 041/SGTB/2007/1.1 (2007–2009); CGL2008-01898 (2009–2011), 042/RN08/03.4 (2008–2010), CTM2011-30471-C02-01 (2012–2014).


  1. 1.
    Quintana XD, Cañedo-Argüelles M, Nebra A, Gascón S, Rieradevall M, Caiola N, Sala J, Ibàñez C, Sánchez-Millaruelo N, Boix D (2015) New tools to analyse the ecological status of Mediterranean wetlands and shallow lakes. Hdb Environ Chem. doi: 10.1007/698_2015_391
  2. 2.
    Marcé R, Armengol J, Navarro E (2015) Assessing ecological integrity in large reservoirs according to the Water Framework Directive. Hdb Environ Chem. doi: 10.1007/698_2015_400
  3. 3.
    Tornés E, Sabater S (2015) The use of diatoms to assess the ecological status in Catalan Rivers: application of the WFD and lessons learned from the European intercalibration exercise. Hdb Environ Chem. doi: 10.1007/698_2015_344
  4. 4.
    Fennessy S, Ibañez C, Munné A, Caiola N, Kirchner N, Sola C (2015) Biological indices based on macrophytes: an overview of methods used in Catalonia and the USA to determine the status of rivers and wetlands. Hdb Environ Chem. doi: 10.1007/698_2015_347
  5. 5.
    Benejam L, Ordeix M, Casals F, Caiola N, de Sostoa A, Solà C, Munné A (2015) Fish as ecological indicators in Mediterranean streams: the Catalan experience. Hdb Environ Chem. doi: 10.1007/698_2015_345
  6. 6.
    García-Berthou E, Bae M-J, Benejam L, Alcaraz C, Casals F, de Sostoa A, Solà C, Munné A (2015) Fish-based indices in Catalan rivers: intercalibration and comparison of approaches. Hdb Environ Chem. doi:  10.1007/698_2015_342
  7. 7.
    Ibáñez C, Caiola N, Trobajo R, Nebra A, Rovira L (2015) Biological indicators to assess the ecological status of river-dominated estuaries: the case of benthic indicators in the Ebro River estuary. Hdb Environ Chem. doi:  10.1007/698_2015_398
  8. 8.
    Munné A, Ginebreda A, Prat N (2015) Water status assessment in the Catalan River Basin District: experience gathered after fifteen years with the Water Framework Directive (WFD). Hdb Environ Chem. doi:  10.1007/698_2015_420
  9. 9.
    Rodríguez-Labajos B, Solà C, Munné A (2015) A first biopollution index approach and its relationship on biological quality in Catalan rivers. Hdb Environ Chem. doi:  10.1007/698_2015_440
  10. 10.
    Baird DJ, Burton GA (2001) Ecological variability: separating natural from antropogeneic causes of ecosystem impairment. SETAC, BrusselsGoogle Scholar
  11. 11.
    Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523CrossRefGoogle Scholar
  12. 12.
    Liess M, Von der Ohe C (2005) Analizing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965CrossRefGoogle Scholar
  13. 13.
    Schäfer RB, Kefford BJ, Metzeling L, Liess M, Burgert S, Marchant R, Pettigrove V, Goonan P, Nugegoda D (2011) A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Sci Total Environ 409(11):2055–2063CrossRefGoogle Scholar
  14. 14.
    Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149CrossRefGoogle Scholar
  15. 15.
    Bocchetti R, Lamberti CV, Pisanelli B, Razzetti EM, Maggi C, Catalano B, Sesta G, Martuccio G, Gabellini M, Regoli F (2008) Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic sea. Mar Environ Res 66(1):24–26CrossRefGoogle Scholar
  16. 16.
    Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42(8):656–666CrossRefGoogle Scholar
  17. 17.
    Solé M, De Alda MJL, Castillo M, Porte C, Ladegaard-Pedersen K, Barceló D (2000) Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain). Environ Sci Tech 34(24):5076–5083CrossRefGoogle Scholar
  18. 18.
    Solé M, Barceló D, Porte C (2002) Seasonal variation of plasmatic and hepatic vitellogenin and EROD activity in carp, Cyprinus carpio, in relation to sewage treatment plants. Aquat Toxicol 60(3–4):233–248CrossRefGoogle Scholar
  19. 19.
    Solé M, Raldua D, Piferrer F, Barceló D, Porte C (2003) Feminization of wild carp, Cyprinus carpio, in a polluted environment: plasma steroid hormones, gonadal morphology and xenobiotic metabolizing system. Comp Biochem Physiol C Toxicol Pharmacol 136(2):145–156CrossRefGoogle Scholar
  20. 20.
    Lavado R, Thibaut R, Raldúa D, Martín R, Porte C (2004) First evidence of endocrine disruption in feral carp from the Ebro river. Toxicol Appl Pharmacol 196(2):247–257CrossRefGoogle Scholar
  21. 21.
    Fernandes D, Potrykus J, Morsiani C, Raldua D, Lavado R, Porte C (2002) The combined use of chemical and biochemical markers to assess water quality in two low-stream rivers (NE Spain). Environ Res 90(2):169–178CrossRefGoogle Scholar
  22. 22.
    Lavado R, Ureña R, Martin-Skilton R, Torreblanca A, Del Ramo J, Raldúa D, Porte C (2006) The combined use of chemical and biochemical markers to assess water quality along the Ebro River. Environ Pollut 139(2):330–339CrossRefGoogle Scholar
  23. 23.
    Faria M, Huertas D, Soto DX, Grimalt JO, Catalan J, Riva MC, Barata C (2010) Contaminant accumulation and multi-biomarker responses in field collected zebra mussels (Dreissena polymorpha) and crayfish (Procambarus clarkii), to evaluate toxicological effects of industrial hazardous dumps in the Ebro river (NE Spain). Chemosphere 78(3):232–240CrossRefGoogle Scholar
  24. 24.
    Faria M, López MA, Díez S, Barata C (2010) Are native naiads more tolerant to pollution than exotic freshwater bivalve species? An hypothesis tested using physiological responses of three species transplanted to mercury contaminated sites in the Ebro river (NE, Spain). Chemosphere 81(10):1218–1226CrossRefGoogle Scholar
  25. 25.
    Navarro A, Quirós L, Casado M, Faria M, Carrasco L, Benejam L, Benito J, Díez S, Raldúa D, Barata C, Bayona JM, Piña B (2009) Physiological responses to mercury in feral carp populations inhabiting the low Ebro river (NE Spain), a historically contaminated site. Aquat Toxicol 93(2–3):150–157CrossRefGoogle Scholar
  26. 26.
    Olivares A, Quirós L, Pelayo S, Navarro A, Bosch C, Grimalt JO, Fabregat MDC, Faria M, Benejam L, Benito J, Solé M, Barata C, Piña B (2010) Integrated biological and chemical analysis of organochlorine compound pollution and of its biological effects in a riverine system downstream the discharge point. Sci Total Environ 408(22):5592–5599CrossRefGoogle Scholar
  27. 27.
    Quirós L, Ruiz X, Sanpera C, Jover L, Piña B (2008) Analysis of micronucleated erythrocytes in heron nestlings from reference and impacted sites in the Ebro basin (N.E. Spain). Environ Pollut 155(1):81–87CrossRefGoogle Scholar
  28. 28.
    Barata C, Fabregat MC, Cotín J, Huertas D, Solé M, Quirós L, Sanpera C, Jover L, Ruiz X, Grimalt JO, Piña B (2010) Blood biomarkers and contaminant levels in feathers and eggs to assess environmental hazards in heron nestlings from impacted sites in Ebro basin (NE Spain). Environ Pollut 158(3):704–710CrossRefGoogle Scholar
  29. 29.
    Escartín E, Porte C (1996) Bioaccumulation, metabolism, and biochemical effects of the organophosphorus pesticide fenitrothion in Procambarus clarkii. Environ Toxicol Chem 15(6):915–920CrossRefGoogle Scholar
  30. 30.
    Escartín E, Porte C (1997) The use of cholinesterase and carboxylesterase activities from Mytilus galloprovincialis in pollution monitoring. Environ Toxicol Chem 16(10):2090–2095CrossRefGoogle Scholar
  31. 31.
    Porte C, Escartín E (1998) Cytochrome P450 system in the hepatopancreas of the red swamp crayfish Procambarus clarkii: a field study. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121(1–3):333–338CrossRefGoogle Scholar
  32. 32.
    Morcillo Y, Albalat A, Porte C (1999) Mussels as sentinels of organotin pollution: bioaccumulation and effects on P450-mediated aromatase activity. Environ Toxicol Chem 18(6):1203–1208CrossRefGoogle Scholar
  33. 33.
    Minier C, Borghi V, Moore MN, Porte C (2000) Seasonal variation of MXR and stress proteins in the common mussel, Mytilus galloprovincialis. Aquat Toxicol 50(3):167–176CrossRefGoogle Scholar
  34. 34.
    Porte C, Solé M, Borghi V, Martinez M, Chamorro J, Torreblanca A, Ortiz M, Orbea A, Soto M, Cajaraville MP (2001) Chemical, biochemical and cellular responses in the digestive gland of the mussel Mytilus galloprovincialis from the Spanish Mediterranean coast. Biomarkers 6(5):335–350CrossRefGoogle Scholar
  35. 35.
    Damásio J, Navarro-Ortega A, Tauler R, Lacorte S, Barceló D, Soares AMVM, López MA, Riva MC, Barata C (2010) Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. Ecotoxicology 19(6):1084–1094CrossRefGoogle Scholar
  36. 36.
    Ochoa V, Riva C, Faria M, de Alda ML, Barceló D, Fernandez Tejedor M, Roque A, Barata C (2012) Are pesticide residues associated to rice production affecting oyster production in Delta del Ebro, NE Spain? Sci Total Environ 437:209–218CrossRefGoogle Scholar
  37. 37.
    Prat N, Rieradevall M, Barata C, Munné A (2013) The combined use of metrics of biological quality and biomarkers to detect the effects of reclaimed water on macroinvertebrate assemblages in the lower part of a polluted Mediterranean river (Llobregat River, NE Spain). Ecol Indic 24:167–176CrossRefGoogle Scholar
  38. 38.
    Barata C, Damasio J, López MA, Kuster M, De Alda ML, Barceló D, Riva MC, Raldúa D (2007) Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ Toxicol Chem 26(2):370–379CrossRefGoogle Scholar
  39. 39.
    Damásio JB, Barata C, Munné A, Ginebreda A, Guasch H, Sabater S, Caixach J, Porte C (2007) Comparing the response of biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil spillage in a Mediterranean river (NE Catalunya, Spain). Chemosphere 66(7):1206–1216CrossRefGoogle Scholar
  40. 40.
    Barata C, Lekumberri I, Vila-Escalé M, Prat N, Porte C (2005) Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat river basin (NE Spain). Aquat Toxicol 74(1):3–19CrossRefGoogle Scholar
  41. 41.
    Damásio J, Barceló D, Brix R, Postigo C, Gros M, Petrovic M, Sabater S, Guasch H, de Alda ML, Barata C (2011) Are pharmaceuticals more harmful than other pollutants to aquatic invertebrate species: a hypothesis tested using multi-biomarker and multi-species responses in field collected and transplanted organisms. Chemosphere 85(10):1548–1554CrossRefGoogle Scholar
  42. 42.
    Damásio J, Fernández-Sanjuan M, Sánchez-Avila J, Lacorte S, Prat N, Rieradevall M, Soares AMVM, Barata C (2011) Multi-biochemical responses of benthic macroinvertebrate species as a complementary tool to diagnose the cause of community impairment in polluted rivers. Water Res 45(12):3599–3613CrossRefGoogle Scholar
  43. 43.
    Mc William RA, Baird DJ (2002) Postexposure feeding depression: a new toxicity endpoint for use in laboratory studies with Daphnia magna. Environ Toxicol Chem 21:1198–1205CrossRefGoogle Scholar
  44. 44.
    Mc William RA, Baird DJ (2002) Application of postexposure feeding depression bioassays with Daphnia magna for assessment of toxic effluents in rivers. Environ Toxicol Chem 21:1462–1468CrossRefGoogle Scholar
  45. 45.
    Maltby L, Clayton SA, Wood RM, Mc Loughlin N (2002) Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: robustness, responsiveness, and relevance. Environ Toxicol Chem 21:361–368CrossRefGoogle Scholar
  46. 46.
    De Castro-Català N, López-Doval J, Gorga M, Petrovic M, Muñoz I (2013) Is reproduction of the snail Physella acuta affected by endocrine disrupting compounds? An in situ bioassay in three Iberian basins. J Hazard Mater 263:248–255CrossRefGoogle Scholar
  47. 47.
    Damásio J, Tauler R, Teixidó E, Rieradevall M, Prat N, Riva MC, Soares AMVM, Barata C (2008) Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain). Aquat Toxicol 87(4):310–320CrossRefGoogle Scholar
  48. 48.
    Puértolas L, Damásio J, Barata C, Soares AMVM, Prat N (2010) Evaluation of side-effects of glyphosate mediated control of giant reed (Arundo donax) on the structure and function of a nearby Mediterranean river ecosystem. Environ Res 110(6):556–564CrossRefGoogle Scholar
  49. 49.
    Medina MH, Correa JA, Barata C (2007) Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere 67(11):2105–2114. doi: 10.1016/j.chemosphere.2006.12.024 CrossRefGoogle Scholar
  50. 50.
    Faria M, Carrasco L, Diez S, Riva MC, Bayona JM, Barata C (2009) Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. Comp Biochem Physiol C Toxicol Pharmacol 149(3):281–288. doi: 10.1016/j.cbpc.2008.07.012, S1532-0456(08)00145-2 [pii]CrossRefGoogle Scholar
  51. 51.
    Faria M, Lopez MA, Fernandez-Sanjuan M, Lacorte S, Barata C (2010) Comparative toxicity of single and combined mixtures of selected pollutants among larval stages of the native freshwater mussels (Unio elongatulus) and the invasive zebra mussel (Dreissena polymorpha). Sci Total Environ 408(12):2452–2458. doi: 10.1016/j.scitotenv.2010.02.047, S0048-9697(10)00217-2 [pii]CrossRefGoogle Scholar
  52. 52.
    Pina B, Barata C (2011) A genomic and ecotoxicological perspective of DNA array studies in aquatic environmental risk assessment. Aquat Toxicol 105:40–49. doi: 10.1016/j.aquatox.2011.06.006 CrossRefGoogle Scholar
  53. 53.
    Quiros L, Raldua D, Navarro A, Casado M, Barcelo D, Pina B (2007) A noninvasive test of exposition to toxicants: quantitative analysis of cytochrome P4501A expression in fish scales. Environ Toxicol Chem 26(10):2179–2186. doi: 10.1897/07-027r.1 CrossRefGoogle Scholar
  54. 54.
    Okoth E, Gallardo C, Macharia JM, Omore A, Pelayo V, Bulimo DW, Arias M, Kitala P, Baboon K, Lekolol I, Mijele D, Bishop RP (2012) Comparison of African swine fever virus prevalence and risk in two contrasting pig-farming systems in South-west and Central Kenya. Prev Vet Med. doi: 10.1016/j.prevetmed.2012.11.012, S0167-5877(12)00376-5 [pii]Google Scholar
  55. 55.
    Montie EW, Fair PA, Bossart GD, Mitchum GB, Houde M, Muir DCG, Letcher RJ, McFee WE, Starczak VR, Stegeman JJ, Hahn ME (2008) Cytochrome P4501A1 expression, polychlorinated biphenyls and hydroxylated metabolites, and adipocyte size of bottlenose dolphins from the Southeast United States. Aquat Toxicol 86(3):397–412. doi: 10.1016/j.aquatox.2007.12.004 CrossRefGoogle Scholar
  56. 56.
    Olivares A, Quiros L, Pelayo S, Navarro A, Bosch C, Grimalt JO, del Carme Fabregat M, Faria M, Benejam L, Benito J, Sole M, Barata C, Pina B (2010) Integrated biological and chemical analysis of organochlorine compound pollution and of its biological effects in a riverine system downstream the discharge point. Sci Total Environ 408(22):5592–5599. doi: 10.1016/j.scitotenv.2010.08.009 CrossRefGoogle Scholar
  57. 57.
    Navarro A, Quiros L, Casado M, Faria M, Carrasco L, Benejam L, Benito J, Diez S, Raldua D, Barata C, Bayona JM, Pina B (2009) Physiological responses to mercury in feral carp populations inhabiting the low Ebro river (NE Spain), a historically contaminated site. Aquat Toxicol 93(2–3):150–157. doi: 10.1016/j.aquatox.2009.04.009 CrossRefGoogle Scholar
  58. 58.
    Piña B, Casado M, Quirós L (2007) Analysis of gene expression as a new tool in ecotoxicology and environmental monitoring. TrAC Trends Anal Chem 26(11):1145–1154. doi: 10.1016/j.trac.2007.09.009 CrossRefGoogle Scholar
  59. 59.
    Denslow ND, Garcia-Reyero N, Barber DS (2007) Fish ‘n’ chips: the use of microarrays for aquatic toxicology. Mol Biosyst 3(3):172–177. doi: 10.1039/b612802p CrossRefGoogle Scholar
  60. 60.
    Navarro A, Campos B, Barata C, Pina B (2013) Transcriptomic seasonal variations in a natural population of zebra mussel (Dreissena polymorpha). Sci Total Environ 454:482–489. doi: 10.1016/j.scitotenv.2013.03.048 CrossRefGoogle Scholar
  61. 61.
    Navarro A, Sanchez-Fontenla J, Cordero D, Faria M, Pena JB, Saavedra C, Blazquez M, Ruiz O, Urena R, Torreblanca A, Barata C, Pina B (2013) Genetic and phenoptypic differentiation of zebra mussel populations colonizing Spanish river basins. Ecotoxicology 22(5):915–928. doi: 10.1007/s10646-013-1084-7 CrossRefGoogle Scholar
  62. 62.
    Sabater S, Ginebrerda A, Barceló D (2012) The Llobregat. The history of a polluted Mediterranean river, vol 21, The handbook of environmental chemistry. Springer, LondonGoogle Scholar
  63. 63.
    Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25(1):272–280CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Environmental ChemistryInstitute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC)BarcelonaSpain

Personalised recommendations