Skip to main content

Impacts of Advanced Oxidation Processes on Microbiomes During Wastewater Treatment

  • Chapter
  • First Online:
Book cover Advanced Treatment Technologies for Urban Wastewater Reuse

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 45))

Abstract

The increase of antibiotic resistance in clinical settings but also in wastewater treatment plants is of increasing concern to human health. The goal of this chapter is to investigate the potential of different tertiary wastewater treatment technologies as to the reduction of the amount of antibiotic-resistant bacteria and genes in wastewater effluents. Molecular- and cultivation-based techniques are reported in the current scientific literature for the analysis of bacterial communities and especially opportunistic pathogenically bacteria in wastewater and after different levels of disinfection processes. Additionally, the presence of antibiotic resistance genes (vanA, mecA, ampC, ermB, blaVIM, tetM) and phenotypic resistance to ciprofloxacin, cefuroxime, trimethoprim, ofloxacin, and tetracycline were analyzed to characterize the impact of different wastewater treatments and advanced oxidation processes (AOPs) on the effluent antibiotic resistance patterns. The examination of the application of advanced oxidation and photo-driven technologies showed significant discrepancy among the removal of different bacterial families as well as bacterial species in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

∙HO:

Hydroxyl radical

AmpC:

Ampicillin resistance gene

AOP:

Advanced oxidation process

ARB:

Antibiotic-resistant bacteria

ARG:

Antibiotic resistance gene

blaVIM:

Imipenem resistance gene

DNA:

Deoxyribonucleic acid

DOC:

Dissolved organic carbon

ermB:

Erythromycin resistance

H2O2 :

Hydrogen peroxide

HGT:

Horizontal gene transfer

intI1:

Integron 1

mecA:

Methicillin resistance gene

O3 :

Ozone

recA:

Gene coding for the bacterial DNA recombination protein

ROS:

Reactive oxygen species

Sul1:

Sulfonamide resistance

tetG:

Tetracycline resistance gene G

tetM:

Tetracycline resistance gene M

tetW:

Tetracycline resistance gene W

tetX:

Tetracycline resistance gene X

TiO2 :

Titanium dioxide

UV:

Ultraviolet radiation ranging from 400 to 100 nm

UV-C:

Specific wavelength of 280–100 nm

vanA:

Vancomycin resistance gene

WWTP:

Wastewater treatment plant

References

  1. Zhang L, Liu Z (1989) A methodological research on environmental impact assessment of sewage irrigation region. Chi Environ Sci 9:298–303

    Google Scholar 

  2. Toze S (2006) Reuse of effluent water—benefits and risks. Agr Water Manage 80:140–159

    Article  Google Scholar 

  3. Kiziloglu F, Tuean M, Sahin U, Angin I, Anapali O, Okuroglu M. (2007) Effects of wastewater irrigation on soil and cabbage-plant (Brassica olereacea var. capitate cv. Yavola-1) chemical properties. J Plant Nutr Soil Sci 170:166–172

    Google Scholar 

  4. Schwartz T, Hoffmann S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and U.V. disinfection in a public drinking water distribution system. J Appl Microbiol 95(3):591–601

    Article  CAS  Google Scholar 

  5. Czekalski N, Berthold T, Caucci S et al (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front Microbiol 22:106

    Google Scholar 

  6. Rizzo L, Manaia C, Merlin C et al (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360

    Article  CAS  Google Scholar 

  7. Volkmann H, Schwartz T, Carmen S et al (2006) Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets. Mol Cell Probe 21(2):125–133

    Article  Google Scholar 

  8. Germap 2012, Antibiotika-Resistenz und -Verbrauch, Bericht über Antibiotikaverbrauch und die Verbreitung von Antibiotikaresistenzen in der human- und Veterinärmedizin in Deutschland, http://www.bvl.bund.de/SharedDocs/Downloads/05_Tierarzneimittel/germap2012.html;jsessionid=B905EF1A1C481E4391EEDD2869C7BB36.2_cid340.

  9. Hirsch R, Ternes T, Haberer K, Kratz K (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  CAS  Google Scholar 

  10. Le Minh N, Khan SJ, Drewes JE, Stuetz RM (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Res 44:4295–4323

    Article  Google Scholar 

  11. Li J, Cheng W, Xu L et al (2015) Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. Environ Sci Poll Res Int 22(6):4587–4596

    Article  CAS  Google Scholar 

  12. Gilboa Y, Friedler E (2008) UV disinfection of RBC-treated light greywater effluent: kinetics, survival and regrowth of selected microorganisms. Water Res 42:1043–1050

    Article  CAS  Google Scholar 

  13. Davies J (2006) Are antibiotics naturally antibiotics. J Ind Microbiol Biotechnol 33(7):496–499

    Article  CAS  Google Scholar 

  14. Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 17(3):311–320

    Article  Google Scholar 

  15. Michael I, Rizzo L, McArdell CS et al (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995

    Article  CAS  Google Scholar 

  16. Marti E, Huerta B, Rodríguez-Mozaz S et al (2014) Characterization of ciprofloxacin-resistant isolates from a wastewater treatment plant and its receiving river. Water Res 15:67–76

    Article  Google Scholar 

  17. Hanjra MA, Blackwell J, Carr G et al (2012) Wastewater irrigation and environmental health: Implications for water governance and public policy. Int J Hyg Environ Health 215(3):255–269

    Article  Google Scholar 

  18. Varela AR, Ferro G, Vredenburg J et al (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161

    Article  Google Scholar 

  19. Korzeniewska E, Korzeniewska A, Harnisz M (2013) Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotox Environ Safe 91:96–102

    Article  CAS  Google Scholar 

  20. Feuerpfeil I, Lopez-Pila J, Schmidt R et al (1999) Antibiotikaresistenzen-Antibiotikaresistente Bakterien und Antibiotika in der Umwelt. Bundesgesundheitsblatt 42(1):37–50

    Article  Google Scholar 

  21. Rahube TO, Marti R, Scott A et al (2014) Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. Appl Environ Microbiol 80(22):6898–6907

    Article  Google Scholar 

  22. Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health 10(8):559–573

    Article  CAS  Google Scholar 

  23. Iwane T, Urase T, Yamamoto K (2001) Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci Technol 43(2):91–99

    CAS  Google Scholar 

  24. Da Silva MF, Tiago I, Veríssimo A, Boaventura AR et al (2005) Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiol Ecol 55(2):322–329

    Article  Google Scholar 

  25. Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M et al (2007) Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60(1):166–176

    Article  CAS  Google Scholar 

  26. Volkmann H, Schwartz T, Bischoff P et al (2004) Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Meth 56:277–286

    Article  CAS  Google Scholar 

  27. Szczepanowski R, Linke B, Krhan I et al (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiol 155:2306–2319

    Article  CAS  Google Scholar 

  28. Du J, Ren H, Geng J et al (2014) Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. Environ Sci Poll Res Int 21(12):7276–7284

    Article  CAS  Google Scholar 

  29. Shrivastava R, Upreti RK, Jain SR, Prasad KN, Seth PK, Chaturvedi UC (2004) Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol Environ Safety 58(2):277–283

    Article  CAS  Google Scholar 

  30. Malato S, Fernández-Ibánez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  31. Kraft S, Obst U, Schwartz T (2011) Immunological detection of UV induced cyclobutane pyrimidine dimers and (6–4) photoproducts in DNA from reference bacteria and natural aquatic populations. J Microbiol Meth 84(3):435–441

    Article  Google Scholar 

  32. Jungfer C, Friedrich F, Varela Villarreal J et al (2013) Drinking water biofilms on copper and stainless steel exhibit specific molecular responses towards different disinfection regimes at waterworks. Biofouling 29(8):891–907

    Article  CAS  Google Scholar 

  33. Jungfer C, Schwartz T, Obst U (2007) UV-induced dark repair mechanisms in bacteria associated with drinking water. Water Res 41(1):188–196

    Article  CAS  Google Scholar 

  34. Süß J, Volz S, Obst U, Schwartz T (2009) Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection. Water Res 43(15):3705–3716

    Article  Google Scholar 

  35. Hijnen WA, Beerendonk EF, Medema GJ (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40(1):3–22

    Article  CAS  Google Scholar 

  36. Stohl EA, Brockman JP, Burkle KL et al (2003) Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 278(4):2278–2285

    Article  CAS  Google Scholar 

  37. Oncu NB, Balcioglu IA (2013) Antimicrobial contamination removal from environmentally relevant matrices: a literature review and a comparison of three processes for drinking water treatment. Ozone-Sci Eng 35:73–85

    Article  CAS  Google Scholar 

  38. Kubacka A, Serrano C, Ferrer M et al (2007) High performance dual-action polymer–TiO2 nanocomposite films via melting processing. Nano Lett 7:2529–2534

    Article  CAS  Google Scholar 

  39. Rincón A, Pulgarin C (2006) Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl Catal B Environ 63:222–231

    Article  Google Scholar 

  40. Maness P, Smolinski S, Blake DM et al (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    CAS  Google Scholar 

  41. Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photoc Photobio A 156(1–3):227–233

    Article  CAS  Google Scholar 

  42. Herrera Melián JA, Rodríguez JM, Viera SA et al (2000) The photocatalytic disinfection of urban waste waters. Chemosphere 41(3):323–327

    Article  Google Scholar 

  43. Perez-Estrada LA, Malato S, Gernjak W et al (2005) Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ Sci Technol 39(21):8300–8306

    Article  CAS  Google Scholar 

  44. Sichel C, Fernández-Ibánez P, de Cara M, Tello J (2009) Lethal synergy of solar UV-radiation and H2O2 on wild Fusarium solani spores in distilled and natural well water. Water Res 43(7):1841–1850

    Article  CAS  Google Scholar 

  45. Spuhler D, Rengifo-Herrera JA, Pulgarin C (2010) The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl Catal B Environ 96:126–141

    Article  CAS  Google Scholar 

  46. Polo-López MI, García-Fernández I, Velegraki T et al (2012) Mild solar photo-Fenton: an effective tool for the removal of Fusarium from simulated municipal effluents. Appl Catal B Environ 111:54–554

    Google Scholar 

  47. Ortega-Gómez E, Fernández-Ibáñez P, Ballasteros MM et al (2012) Water disinfection using photo-Fenton: effect of temperature on Enterococcus faecalis survival. Water Res 46:6154–6162

    Article  Google Scholar 

  48. Michael I, Hapeshi E, Michael C et al (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and Phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634

    Article  CAS  Google Scholar 

  49. Cengiz M, Uslu MO, Balcioglu I (2010) Treatment of E. coli HB101 and the tetM gene by Fenton’s reagent and ozone in cow manure. J Environ Manage 91:2590–2593

    Article  CAS  Google Scholar 

  50. Diao HF, Li XY, Gu JD et al (2004) Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochem 39:1421–1426

    Article  CAS  Google Scholar 

  51. Kohanski MA, Dwyer DJ, Hayete B et al (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810

    Article  CAS  Google Scholar 

  52. Rieder A, Schwartz T, Schön-Hölz K et al (2008) Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field (PEF) treatment of clinical wastewater. J Appl Microbiol 105(6):2035–2045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Ministry of Education and Research (BMBF), the Karlsruhe Institute of Technology (KIT), the COST (European Cooperation in Science and Technology) scientific program on “Detecting evolutionary hotspots of antibiotic resistances in Europe (DARE),” and Nireas-IWRC (ΝΕΑ ΥΠΟΔΟΜΗ/ΣΤΡΑΤΗ/0308/09) which is cofinanced by the Republic of Cyprus and the European Regional Development Fund through the Research Promotion Foundation of Cyprus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alexander, J., Karaolia, P., Fatta-Kassinos, D., Schwartz, T. (2015). Impacts of Advanced Oxidation Processes on Microbiomes During Wastewater Treatment. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Advanced Treatment Technologies for Urban Wastewater Reuse . The Handbook of Environmental Chemistry, vol 45. Springer, Cham. https://doi.org/10.1007/698_2015_359

Download citation

Publish with us

Policies and ethics