Pollutants of Emerging Concern in Rivers of Catalonia: Occurrence, Fate, and Risk

  • Antoni GinebredaEmail author
  • Sandra Pérez
  • Daniel Rivas
  • Maja Kuzmanovic
  • Damià Barceló
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 42)


The present chapter provides a review of the occurrence, fate, and risk associated to different families or emerging and priority organic micropollutants in the rivers of Catalonia. Compounds belonging to diverse groups such as industrial compounds, perfluoroalkyl substances, pesticides, halogenated flame retardants, pharmaceuticals and hormones, personal care products, and illegal drugs, as well as their transformation products, are examined. Both emission levels from sewage systems and those found at the receiving water bodies are compared. Potential fate and transformation of the parent compounds is taken into consideration. Finally their environmental risk in terms of the associated ecotoxicity with respect to three trophic levels (Daphnia, algae, and fish) as recommended by the WFD is assessed. This prioritization exercise allows identifying those micropollutants that are more relevant in Catalonian Rivers.


Ecotoxicity Emerging contaminants Prioritization Risk assessment Transformation products Water Framework Directive 



This work was funded by the Spanish Ministry of Economy and Competitiveness project Consolider-Ingenio 2010 SCARCE CSD2009-00065 and by the Generalitat de Catalunya (Consolidated Research Groups “2014 SGR 418 – Water and Soil Quality Unit”). Maja Kuzmanovic acknowledges AGAUR fellowship from the Generalitat de Catalunya.


  1. 1.
    Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561CrossRefGoogle Scholar
  2. 2.
    European Commission (2006) Regulation 1907/2006. Registration, evaluation, authorisation and restriction of chemicals (REACH). Off J Eur Union L396:1–849Google Scholar
  3. 3.
    European Union (2013) Directive 2013/39/EC of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union L226:1–17Google Scholar
  4. 4.
    Piha H, Dulio V, Hanke G (2010) Workshop report: river basin-specific pollutants identification and monitoring. Publications Office of the European Union, Luxembourg, p 59Google Scholar
  5. 5.
    Guillén D, Ginebreda A, Farré M, Darbra RM, Petrovic M, Gros M, Barceló D (2012) Prioritization of chemicals in the aquatic environment based on risk assessment: Analytical, modeling and regulatory perspective. Sci Total Environ 440:236–252CrossRefGoogle Scholar
  6. 6.
    Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938CrossRefGoogle Scholar
  7. 7.
    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077CrossRefGoogle Scholar
  8. 8.
    Murray KE, Thomas SM, Bodour AA (2010) Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ Pollut 158:3462–3471CrossRefGoogle Scholar
  9. 9.
    Petrović M, Gonzalez S, Barceló D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal Chem 22(10):685–696CrossRefGoogle Scholar
  10. 10.
    Guasch H, Ginebreda A, Geiszinger A (eds) (2012). Emerging and priority pollutants in rivers. The Handbook of Environmental Chemistry, vol 19. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  11. 11.
    Sabater S, Ginebreda A, Barceló D (eds) (2012) The Llobregat: the story of a polluted Mediterranean River. The Handbook of Environmental Chemistry, vol 21. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  12. 12.
    Petrović M, Ginebreda A, Muñoz I, Barceló D (2013) The river drugstore: the threats of emerging pollutants to river conservation. In: Elosegui A, Sabater S (eds) River conservation challenges and opportunities. Fundación BBVA, Bilbao, pp 105–125Google Scholar
  13. 13.
    Kuzmanović M, Ginebreda A, Petrović M, Barceló D (2015) Risk assessment based prioritization of 200 organic micropollutants in 4 Iberian rivers. Sci Total Environ 503–504:289–299CrossRefGoogle Scholar
  14. 14.
    López-Doval JC, Ginebreda A, Caquet T, Dahm CN, Petrovic M, Barceló D, Muñoz I (2013) Pollution in mediterranean-climate rivers. Hydrobiologia 719(1):427–450CrossRefGoogle Scholar
  15. 15.
    Céspedes R, Lacorte S, Ginebreda A, Barceló D (2008) Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain). Environ Pollut 153(2):384–392CrossRefGoogle Scholar
  16. 16.
    Espadaler I, Caixach J, Om J, Ventura F, Cortina M, Paune F, Rivera J (1997) Identification of organic pollutants in Ter river and its system of reservoirs supplying water to Barcelona (Catalonia, Spain): A study by GC/MS and FAB/MS. Water Res 31(8):1996–2004CrossRefGoogle Scholar
  17. 17.
    Matamoros V, Salvadó V (2012) Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants. Chemosphere 86(2):111–117CrossRefGoogle Scholar
  18. 18.
    Matamoros V, Salvadó V (2013) Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. J Environ Manag 117:96–102CrossRefGoogle Scholar
  19. 19.
    Barón E, Santín G, Eljarrat E, Barceló D (2014) Occurrence of classic and emerging halogenated flame retardants in sediment and sludge from Ebro and Llobregat river basins (Spain). J Hazard Mater 265:288–295CrossRefGoogle Scholar
  20. 20.
    Santín G, Barón E, Eljarrat E, Barceló D (2013) Emerging and historical halogenated flame retardants in fish samples from Iberian rivers. J Hazard Mater 263:116–121CrossRefGoogle Scholar
  21. 21.
    Labandeira A, Eljarrat E, Barceló D (2007) Congener distribution of polybrominated diphenyl ethers in feral carp (Cyprinus carpio) from the Llobregat River, Spain. Environ Pollut 146(1):188–195CrossRefGoogle Scholar
  22. 22.
    Eljarrat E, Raldúa D, Barceló D (2011) Origin, occurrence and behaviour of brominated flame retardants in the Ebro River Basin. In: Barceló D, Petrovic M (eds) “The Ebro River Basin”, The Handbook of Environmental Chemistry, vol 13. Springer-Verlag, Berlin Heidelberg, pp 167–187Google Scholar
  23. 23.
    Eljarrat E, Barceló D (2012) Occurrence and behavior of brominated flame retardants in the Llobregat River Basin. In: Sabater S, Ginebreda A, Barceló D (eds) The Llobregat: the story of a polluted Mediterranean River. The Handbook of Environmental Chemistry, vol 21. Springer-Verlag, Berlin Heidelberg, pp 135–151Google Scholar
  24. 24.
    De Castro-Català N, Muñoz I, Armendáriz L, Campos B, Barceló D, López-Doval J, Pérez S, Petrovic M, Picó Y, Riera JL (2015) Invertebrate community responses to emerging water pollutants in Iberian river basins. Sci Total Environ 503–504:142–150CrossRefGoogle Scholar
  25. 25.
    Gorga M, Insa S, Petrovic M, Barceló D (2015) Occurrence and spatial distribution of EDCs and related compounds in waters and sediments of Iberian rivers. Sci Total Environ 503–504:69–86CrossRefGoogle Scholar
  26. 26.
    Petrovic M, Barceló D (2012) Inputs of pharmaceuticals and endocrine disrupting compounds in the Llobregat River Basin. In: Sabater S, Ginebreda A, Barceló D (eds) The Llobregat: The story of a polluted Mediterranean River. The Handbook of Environmental Chemistry, vol 21. Springer-Verlag, Berlin Heidelberg, pp 151–166Google Scholar
  27. 27.
    López-Serna R, Postigo C, Blanco J, Pérez S, Ginebreda A, de Alda ML, Petrović M, Munné A, Barceló D (2012) Assessing the effects of tertiary treated wastewater reuse on the presence emerging contaminants in a Mediterranean river (Llobregat, NE Spain). Environ Sci Pollut Res 19(4):1000–1012Google Scholar
  28. 28.
    Köck-Schulmeyer M, Ginebreda A, Postigo C, López-Serna R, Pérez S, Brix R, Llorca M, Alda MLD, Petrović M, Munné A, Tirapu L, Barceló D (2011) Wastewater reuse in Mediterranean semi-arid areas: the impact of discharges of tertiary treated sewage on the load of polar micro pollutants in the Llobregat River (NE Spain). Chemosphere 82(5):670–678CrossRefGoogle Scholar
  29. 29.
    Postigo C, López de Alda MJ, Barceló D (2010) Drugs of abuse and their metabolites in the Ebro River basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environ Int 36(1):75–84CrossRefGoogle Scholar
  30. 30.
    Postigo C, López de Alda MJ, Barceló D (2011) Illicit drugs along the Ebro River Basin: occurrence in surface and wastewater and derived consumption estimations. In: Barceló D, Petrovic M (eds) “The Ebro River Basin”. The Handbook of Environmental Chemistry, vol 13. Springer-Verlag, Berlin Heidelberg, pp 189–208Google Scholar
  31. 31.
    Postigo C, Mastroiani N, López de Alda MJ, Barceló D (2012) Illicit drugs and metabolites in the Llobregat River Basin. In: Sabater S, Ginebreda A, Barceló D (eds) The Llobregat: the story of a polluted Mediterranean River. The Handbook of Environmental Chemistry, vol. 21. Springer-Verlag, Berlin Heidelberg, pp 239–262Google Scholar
  32. 32.
    Mastroianni N, Lopez de Alda M, Barcelo D (2014) Analysis of ethyl sulfate in raw wastewater for estimation of alcohol consumption and its correlation with drugs of abuse in the city of Barcelona. J Chromatogr A 1360:93–99CrossRefGoogle Scholar
  33. 33.
    Campo J, Pérez F, Masiá A, Picó Y, Farré M, Barceló D (2015) Perfluoroalkyl substance contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain). Sci Total Environ 503–504:48–57CrossRefGoogle Scholar
  34. 34.
    Llorca M, Pérez F, Farré M, Picó Y, Barceló D (2012) Perfluorinated compounds’ analysis, environmental fate and occurrence: the Llobregat River as case study. In: Sabater S, Ginebreda A, Barceló D (eds) The Llobregat: the story of a polluted Mediterranean River. The Handbook of Environmental Chemistry, vol 21. Springer-Verlag, Berlin Heidelberg, pp 193–238Google Scholar
  35. 35.
    Gago-Ferrero P, Mastroianni N, Díaz-Cruz S, Barceló D (2013) Fully Automated determination of nine ultraviolet filters and transformation products in natural waters and wastewaters by on-line solid phase extraction–liquid chromatography tandem mass spectrometry. J Chromatogr A 1294:106–116CrossRefGoogle Scholar
  36. 36.
    Molins-Delgado D, Silvia Díaz-Cruz M, Barceló D (2014) Removal of polar UV stabilizers in biological wastewater treatments and ecotoxicological implications. Chemosphere. doi:10.1016/j.chemosphere.2014.02.084Google Scholar
  37. 37.
    Feo ML, Eljarrat E, Ginebreda A, Barceló D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162CrossRefGoogle Scholar
  38. 38.
    Köck-Schümeyer M, López de Alda M, Martínez E, Farré M, Navarro A, Ginebreda A, Barceló D (2011) Pesticides at the Ebro River Delta: occurrence and toxicity in water and Biota. In: Barceló D, Petrovic M (eds) “The Ebro River Basin”, The Handbook of Environmental Chemistry, vol 13. Springer-Verlag, Berlin Heidelberg, pp 259–274Google Scholar
  39. 39.
    Köck Schulmeyer M, Farré M, Gajda-Schrantz K, Ginebreda A, López de Alda M, Barceló D (2010) Integrated ecotoxicological and chemical approach for the assessment of pesticide pollution in the Ebro river delta (Spain). J Hydrol 383:73–82CrossRefGoogle Scholar
  40. 40.
    Kuster M, de Alda MJL, Barata C et al (2008) Analysis of 17 polar to semi-polar pesticides in the Ebro river delta during the main growing season of rice by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. Talanta 75:390–401CrossRefGoogle Scholar
  41. 41.
    Santos TCR, Rocha JC, Barcelo D (2000) Determination of rice herbicides, their transformation products and clofibric acid using on-line solid-phase extraction followed by liquid chromatography with diode array and atmospheric pressure chemical ionization mass spectrometric detection. J Chromatogr A 879:3–12CrossRefGoogle Scholar
  42. 42.
    Navarro A, Tauler R, Lacorte S et al (2010) Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J Hydrol 383:18–29CrossRefGoogle Scholar
  43. 43.
    Masiá A, Campo J, Navarro-Ortega A, Barceló D, Picó Y (2015) Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. Sci Total Environ 503–504:58–68CrossRefGoogle Scholar
  44. 44.
    Köck-Schulmeyer M, Ginebreda A, González S, Cortina JL, López de Alda M, Barceló D (2011) Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain). Chemosphere 82:670–678Google Scholar
  45. 45.
    Proia L, Osorio V, Soley S, Köck-Schulmeyer M, Pérez S, Barceló D, Romaní AM, Sabater S (2013) Effects of pesticides and pharmaceuticals on biofilms in a highly impacted river. Environ Pollut 178:220–228CrossRefGoogle Scholar
  46. 46.
    Ricart M, Guasch H, Barceló D, Brix R, Conceição MH, Geiszinger A, Geiszinger A, López de Alda M, López-Doval JC, Muñoz I, Postigo C, Romaní AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. J Hydrol 383:52–61CrossRefGoogle Scholar
  47. 47.
    Köck-Schulmeyer M, Villagrasa M, López de Alda M, Céspedes-Sánchez R, Ventura F, Barceló D (2013) Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci Total Environ 458–460:466–476CrossRefGoogle Scholar
  48. 48.
    Silva BFD, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro River Basin, Spain. Chemosphere 85(8):1331–1339CrossRefGoogle Scholar
  49. 49.
    Gros M, Petrovic M, Barceló D (2007) Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro River Basin (Northeast of Spain). Environ Toxicol Chem 26(8):1553–62CrossRefGoogle Scholar
  50. 50.
    Gros M, Petrovic M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–16CrossRefGoogle Scholar
  51. 51.
    Gros M, Petrovic M, Ginebreda A, Barceló D (2011) Sources, occurrence and environmental risk assessment of pharmaceuticals in the Ebro River Basin. In: Barceló D, Petrovic M (eds) “The Ebro River Basin”, The Handbook of Environmental Chemistry, vol 13. Springer-Verlag, Berlin Heidelberg, pp 209–238Google Scholar
  52. 52.
    Osorio V, Marcé R, Pérez S, Ginebreda A, Cortina JL, Barceló D (2012) Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions. Sci Total Environ 440:3–13CrossRefGoogle Scholar
  53. 53.
    Osorio V, Pérez S, Ginebreda A, Barceló D (2012) Pharmaceuticals on a sewage impacted section of a Mediterranean River (Llobregat River, NE Spain) and their relationship with hydrological conditions. Environ Sci Pollut Res 19(4):1013–1025CrossRefGoogle Scholar
  54. 54.
    Osorio V, Proia L, Ricart M, Pérez S, Ginebreda A, Cortina JL, Sabater S, Barceló D (2014) Hydrological variation modulates pharmaceutical levels and biofilm responses in a Mediterranean river. Sci Total Environ 472:1052–1061CrossRefGoogle Scholar
  55. 55.
    Collado N, Rodriguez-Mozaz S, Gros M, Rubirola A, Barceló D, Comas J, Rodriguez-Roda I, Buttiglieri G (2014) Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system. Environ Pollut 185:202–212CrossRefGoogle Scholar
  56. 56.
    Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrović M, Barceló D (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45:1165–1176CrossRefGoogle Scholar
  57. 57.
    Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D (2010) First determination of C60 and C50 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383:44–51CrossRefGoogle Scholar
  58. 58.
    Sanchís J, Martínez E, Ginebreda A, Farré M, Barceló D (2013) Occurrence of linear and cyclic volatile methylsiloxanes in wastewater, surface water and sediments from Catalonia. Sci Total Environ 443:530–538CrossRefGoogle Scholar
  59. 59.
    Navarro-Ortega A, Acuña V, Batalla RJ, Blasco J, Conde C, Elorza FJ, Elosegi A, Francés F, La-Roca F, Muñoz I, Petrovic M, Picó Y, Sabater S, Sanchez-Vila X, Schuhmacher M, Barceló D (2012) Assessing and forecasting the impacts of global change on Mediterranean rivers. The SCARCE Consolider project on Iberian Basins. Environ Sci Pollut Res 19:918–933CrossRefGoogle Scholar
  60. 60.
    Pérez S, Barceló D (2007) Application of advanced mass spectrometric techniques in the analysis and identification of human and microbial metabolites of pharmaceuticals in the aquatic environment. Trends Anal Chem 26:494–514Google Scholar
  61. 61.
    Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG (2003) Environ Sci Technol 37:4543CrossRefGoogle Scholar
  62. 62.
    Strynar MJ, Lindstrom AB (2008) Environ Sci Technol 42:3751CrossRefGoogle Scholar
  63. 63.
    Ju X, Jin Y, Sasaki K, Saito N (2008) Environl Sci Technol 42:3538CrossRefGoogle Scholar
  64. 64.
    Petrovic M, Eljarrat E, Gros M, de la Cal A, Barceló D (2008) Emerging contaminants in the water‐sediment system: case studies of pharmaceuticals and brominated flame retardants in the Ebro River Basin. In: Quievauviller P, Borchers U, Thompson KC, Chippenham TS (eds) The water framework directive: ecological and chemical status monitoring, Water quality measurement series. Wiley, Witshire, pp 287–298. ISBN 9780470716090Google Scholar
  65. 65.
    da Silva BF, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro River basin, Spain. Chemosphere 85(8):1331–1339CrossRefGoogle Scholar
  66. 66.
    Viana M, Postigo C, Querol X, Alastuey A, López de Alda MJ, Barceló D, Artíñano B, López-Mahia P, García Gacio D, Cots N (2011) Cocaine and other illicit drugs in airborne particulates in urban environments: a reflection of social conduct and population size. Environ Pollut 159:1241–1247CrossRefGoogle Scholar
  67. 67.
    Lam MW, Tantuco K, Mabury SA (2003) Environ Sci Technol 37:899CrossRefGoogle Scholar
  68. 68.
    Gonçalves C, Pérez S, Osorio V, Petrovic M, Alpendurada MF, Barceló D (2011) Photofate of Oseltamivir (Tamiflu) and oseltamivir carboxylate under natural and simulated solar irradiation: kinetics. Identification of the transformation products, and environmental occurrence. Environ Sci Technol 45(10):4307–431CrossRefGoogle Scholar
  69. 69.
    Zonja B, Delgado A, Pérez S, Barceló D (2015) LC-HRMS suspect screening for detection-based prioritization of iodinated contrast media photodgradates in surface waters. Environ Sci Technol 49:3464–3472CrossRefGoogle Scholar
  70. 70.
    DellaGreca M, Fiorentino A, Iesce MR, Isidori M, Nardelli A, Previtera L, Temussi F (2003) Environ Toxicol Chem 22:534CrossRefGoogle Scholar
  71. 71.
    Halling-Sorensen B, Sengelov G, Tjornelund J (2002) Arch Environ Contam Toxicol 42:263CrossRefGoogle Scholar
  72. 72.
    Sunderland J, Tobin CM, White LO, MacGowan AP, Hedges AJ (1999) Drugs 58:171CrossRefGoogle Scholar
  73. 73.
    Lee Ferguson P, Brownawell BJ (2003) Environ Toxicol Chem 22(6):1189–1199CrossRefGoogle Scholar
  74. 74.
    Fono LJ, Kolodziej EP, Sedlak DL (2006) Attenuation of wastewater-derived contaminants in an effluent-dominated river. Environ Sci Technol 40:7257–7262CrossRefGoogle Scholar
  75. 75.
    Nyholm N, Ingerslev F, Berg UT, Pedersen JP, Frimer-Larsen H (1996) Chemosphere 33:851CrossRefGoogle Scholar
  76. 76.
    Parsons JR, Sáez M, Dolfing J, de Voogt P (2008) Rev Environ Contam Toxicol 196:53–71Google Scholar
  77. 77.
    Arnot JA, Mackay D (2008) Policies for chemical hazard and risk priority setting: can persistence, bioaccumulation, toxicity, and quantity information be combined? Environ Sci Technol 42(13):4648–4654Google Scholar
  78. 78.
    Sprague JB (1970) Measurement of pollutant toxicity to fish, II-Utilizing and applying bioassay results. Water Res 4:3–32CrossRefGoogle Scholar
  79. 79.
    Kortenkamp A, Backhaus T, Faust M (2009) State of the art report on mixture toxicity. Final report. Contract No. 070307/2007/485103/ETU/D.1. Accessed 11 Aug 2011Google Scholar
  80. 80.
    Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564–2573CrossRefGoogle Scholar
  81. 81.
    Loewe S, Muischnek H (1926) Über Kombinationswirkungen. Naunyn-Schmiedeberg's Arch Pharmacol 114(5):313–326CrossRefGoogle Scholar
  82. 82.
    Bliss C (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615CrossRefGoogle Scholar
  83. 83.
    Barata C, Baird DJ, Nogueira AJA, Soares AMV, Riva MC (2006) Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat Toxicol 78:1–14CrossRefGoogle Scholar
  84. 84.
    Backhaus, T., et al., The BEAM-project: prediction and assessment of mixture toxicities in the aquatic environment. Continental Shelf Research. 23(17–19): p. 1757–1769.Google Scholar
  85. 85.
    Vighi M et al (2003) Water quality objectives for mixtures of toxic chemicals: problems and perspectives. Ecotoxicol Environ Saf 54(2):139–150CrossRefGoogle Scholar
  86. 86.
    Junghans M et al (2006) Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures. Aquat Toxicol 76(2):93–110CrossRefGoogle Scholar
  87. 87.
    Altenburger R, Walter H, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Technol 38(23):6353–6362CrossRefGoogle Scholar
  88. 88.
    Von PC, der Ohe V, Dulio JS, De Deckere E, Kühne R, Ebert RU et al (2011) A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci Total Environ 409:2064–2067CrossRefGoogle Scholar
  89. 89.
    Ginebreda A, Barata C, Barceló D (2012) Risk assessment of pollutants in the Llobregat River Basin. In: Sabater S, Ginebreda A, Barceló D (eds) The Llobregat: the story of a polluted Mediterranean River. The Handbook of Environmental Chemistry, vol 21. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  90. 90.
    Damasio J, Tauler R, Teixido E, Rieradevall M, Prat N, Riva MC, Soares A, Barata C (2008) Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain). Aquat Toxicol 87:310–320CrossRefGoogle Scholar
  91. 91.
    Teixidó E, Terrado M, Ginebreda A, Tauler R (2010) Quality assessment of river waters using risk indexes for substances and sites, based on the COMMPS procedure. J Environ Monit 12:2120–2127Google Scholar
  92. 92.
    Carafa R, Faggiano L, Real M, Munné A, Ginebreda A, Guasch H, Flo M, Tirapu L (2011) Water toxicity assessment and spatial pollution patterns identification in a Mediterranean River Basin District. Tools for Water Management and risk analysis. Sci Total Environ doi:10.10116/j.scitotenv.2011.06.053Google Scholar
  93. 93.
    Gottardo S, Semenzin E, Giove S, Zabeo A, Critto A, de Zwart D, Ginebreda A, Marcomini A (2011) Integrated risk assessment for WFD ecological status classification applied to Llobregat river basin (Spain). Part I—Fuzzy approach to aggregate biological indicators. Sci Total Environ 409:4701–4712Google Scholar
  94. 94.
    Gottardo S, Semenzin E, Giove S, Zabeo A, Critto A, de Zwart D, Ginebreda A, Marcomini A (2011) Integrated risk assessment for WFD ecological status classification applied to Llobregat river basin (Spain). Part II — evaluation process applied to five environmental lines of evidence. Sci Total Environ 409:4681–4692Google Scholar
  95. 95.
    Damásio J, Barceló D, Brix R, Postigo C, Gros M, Petrovic M, Sabater S, Guasch H, de Alda ML, Barata C (2011) Are pharmaceuticals more harmful than other pollutants to aquatic invertebrate species: a hypothesis tested using multi-biomarker and multi-species responses in field collected and transplanted organisms. Chemosphere 85:1548–1554Google Scholar
  96. 96.
    Ginebreda A, Muñoz I, de Alda ML, Brix R, Lopez-Doval J, Barcelo D (2010) Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36:153–162CrossRefGoogle Scholar
  97. 97.
    Tuikka AI, Schmitt C, Höss S, Bandow N, von der Ohe PC, de Zwart D, de Deckere E, Streck G, Mothes S, van Hattum B, Kocan A, Brix R, Brack W, Barceló A Sormunen DJ, Kukkonen JVK (2011) Toxicity assessment of sediments from three European river basins using a sediment contact test battery.Ecotoxicol Environ Safety 74:123–131Google Scholar
  98. 98.
    Ochoa V, Riva C, Faria M, López de Alda M, Barceló D, Fernandez Tejedor M, Barata C (2012) Are pesticide residues associated to rice production affecting oyster production in Delta del Ebro, NE Spain? Sci Total Environ 437:209–218CrossRefGoogle Scholar
  99. 99.
    Ginebreda A, Kuzmanovic M, Guasch H, de Alda ML, López-Doval JC, Muñoz I, Ricart M, Romaní AMB, Sabater S, Barceló D (2014) Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors. Sci Total Environ 468–469:715–723CrossRefGoogle Scholar
  100. 100.
    López-Doval JC, de Castro-Catalan N, Andres I, Blasco J, Ginebreda A, Muñoz I (2012) Analysis of monitoring programs in four Spanish basins and their suitability for ecotoxicological risk assessment. Sci Total Environ 440:194–203CrossRefGoogle Scholar
  101. 101.
    Fàbrega F, Marquès M, Ginebreda A, Kuzmanovic M, Barceló D, Schuhmacher M, Domingo JL, Nadal M (2013) Integrated Risk Index of Chemical Aquatic Pollution (IRICAP): case studies in Iberian rivers. J Haz Mat 263:187–196CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Antoni Ginebreda
    • 1
    Email author
  • Sandra Pérez
    • 1
  • Daniel Rivas
    • 1
  • Maja Kuzmanovic
    • 1
  • Damià Barceló
    • 1
    • 2
  1. 1.Department of Environmental ChemistryInstitute of Environmental Assessment and Water Research (IDAEA-CSIC)BarcelonaSpain
  2. 2.Catalan Institute for Water Research (ICRA)Scientific and Technological Park of the University of GironaGironaSpain

Personalised recommendations