Skip to main content

Biological Indices Based on Macrophytes: An Overview of Methods Used in Catalonia and the USA to Determine the Status of Rivers and Wetlands

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 42))

Abstract

Aquatic macrophytes are commonly used as the basis for assessing the ecological condition of wetlands and rivers and are considered the basis for some of the best indicators of these ecosystems within their landscape. We review key approaches that utilize plant traits as the basis for water resource assessment, including the floristic quality assessment index (FQAI), the Qualitat del Bosc de Ribera (riparian forest quality index or QBR), indicator species analysis (IndVal), and multimetric indexes of ecological integrity (MMIs). The FQAI quantifies how “conservative” a plant species is by evaluating the degree to which it is adapted to a specific set of environmental conditions and then uses that information to assess plant community response by examining the aggregate degree of “conservatism” for all species in a community. The index codifies expert opinion a priori on the ecological nature and tolerance of macrophyte species and has been shown to be sensitive to human activities. Plant traits can also form the basis for assessment using indicator species analysis (IndVal), which allows the environmental preferences of target species to be identified and related to habitat type, site characteristics, environmental change, or gradients of human disturbance. We applied this technique to identify indicator species for river ecosystems in Catalonia. Finally, assessment approaches based on multiple plant-based metrics are illustrated. Species traits used in multimetric indexes (MMIs) are based on testable hypotheses about how plant communities change along human disturbance gradients. These approaches and their application to Catalan and US wetlands and rivers are explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. Lewis, Boca Raton

    Book  Google Scholar 

  2. Karr JR (1991) Biological integrity: a long-neglected aspect of water resource management. Ecol Appl 1:66–84

    Article  Google Scholar 

  3. Fennessy MS, Jacobs AD, Kentula ME (2007) An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands 27:543–560

    Article  Google Scholar 

  4. Fennessy MS, Gernes M, Mack JJ, Wardrop DH (2002) Methods for evaluating wetland condition: using vegetation to assess environmental conditions in wetlands. EPA-822-R-02-020 U.S. Environmental Protection Agency, Office of Water, Washington, DC

    Google Scholar 

  5. Kattge J, Diaz J, Lavorel S et al (2011) TRY – a global database of plant traits. Glob Chang Biol 17:2905–2935

    Article  Google Scholar 

  6. Mitsch WJ, Gosselink J (2007) Wetlands, 4th edn. Wiley, Hoboken

    Google Scholar 

  7. Munné A, Prat N, Sola C, Bonada N, Rieradevall M (2003) A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat Conserv 13:147–163

    Article  Google Scholar 

  8. Brinson MM (1993) A hydrogeomorphic classification for wetlands. Technical Report WRPDE4, U.S. Army Corps of Engineers, Engineer Waterways Experiment Station, Vicksburg, MS

    Google Scholar 

  9. Rheinhardt R, Brinson MM, Brooks R, McKenney-Easterling M et al (2007) Development of a reference-based method for identifying and scoring indicators of condition for coastal plain riparian reaches. Ecol Indic 7:339–361

    Article  Google Scholar 

  10. Wardrop DH, Kentula ME, Brooks R, Fennessy MS, Chamberlain S, Havens K, Hershner C (2013) Monitoring and assessment of wetlands: concepts, case-studies, and lessons learned. In: Brooks R, Wardrop DH (eds) Mid-Atlantic freshwater wetlands: advances in wetlands science, management, policy, and practice. Springer, New York, pp 381–420

    Chapter  Google Scholar 

  11. European Commission (2003) Overall approach to the classification of the ecological status and ecological potential. Water framework directive guideline. common implementation strategy, Working Group 2A, Ecological Status (ECOSTAT), 27 November 2003, p 47

    Google Scholar 

  12. Dallas HF (2013) Ecological status assessment in Mediterranean rivers: complexities and challenges in developing tools for assessing ecological status and defining reference conditions. Hydrobiologia 719:483–507

    Article  Google Scholar 

  13. Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris R (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16:1267–1276

    Article  Google Scholar 

  14. Wilhelm G, Ladd D (1988) Natural area assessment in the Chicago region. In: Transactions of the 53rd North American Wildlife & Natural Resources Conference, pp 361–375

    Google Scholar 

  15. Andreas BK, Lichvar RW (1995) Floristic index for establishing assessment standards: a case study for northern Ohio. Technical Report WRP-DE-8, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, MI

    Google Scholar 

  16. Lopez R, Fennessy MS (2002) Testing the floristic quality assessment index as an indicator of wetland condition along gradients of human influence. Ecol Appl 12:487–497

    Article  Google Scholar 

  17. Medley L, Scozzafava M (2009) Moving toward a national floristic quality assessment: considerations for the EPA National Wetland Condition Assessment. Natl Wetlands Newslett 31:6–10

    Google Scholar 

  18. Andreas BK, Mack JJ, McCormac JS (2004) Floristic quality assessment index (FQAI) for vascular plants and mosses for the state of Ohio. Ohio Environmental Protection Agency, Columbus

    Google Scholar 

  19. Miller SJ, Wardrop DH (2006) Adapting the floristic quality assessment index to indicate anthropogenic disturbance in central Pennsylvania wetlands. Ecol Indic 6:313–326

    Article  Google Scholar 

  20. Fennessy MS, Elifritz B, Lopez R (1998) Testing the floristic quality assessment index as an indicator of riparian wetland disturbance. Ohio Environmental Protection Agency, Division of Surface Water, Wetlands Ecology Unit, Columbus, p 133

    Google Scholar 

  21. Keddy PA, Lee HT, Wisheu IC (1993) Choosing indicators of ecosystem integrity: wetlands as a model system. In: Ecological integrity and the management of ecosystems. Canadian Parks Service and the Heritage Resources Centre, University of Waterloo, Waterloo, pp 61–79

    Google Scholar 

  22. Ward E (2003) Evaluating indicators of ecological integrity in wetlands. Honors Thesis, Biology Department, Kenyon College, Gambier, p 45

    Google Scholar 

  23. Brown MT, Vivas MB (2007) A landscape development intensity index. Environ Monit Assess 101:289–309

    Article  Google Scholar 

  24. Wardrop DH, Fennessy MS, Moon JB, Britson AB (2013) Forecasting critical ecosystem services from measures of wetland condition at the watershed scale in freshwater wetlands of Pennsylvania and Ohio. Report to the U.S. Environmental Protection Agency, EPA-Star Grant R-834262-01

    Google Scholar 

  25. Mack JJ (2007) Integrated wetland assessment program. Part 9: field manual for the vegetation index of biotic integrity for wetlands. Ohio EPA Technical Report WET/2007-6. Ohio Environmental Protection Agency, Wetland Ecology Group, Division of Surface Water, Columbus

    Google Scholar 

  26. US Environmental Protection Agency. National wetland condition assessment 2011. Technical Report. U.S. Environmental Protection Agency, Office of Water, Washington, DC

    Google Scholar 

  27. Ward JV (1989) The four dimensional nature of lotic ecosystems. J North Am Benthol Soc 8:2–8

    Article  Google Scholar 

  28. Fennessy MS, Jacobs AD, Kentula ME (2004) Review of rapid methods for assessing wetland condition. EPA/620/R-04/009/ U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  29. Suárez ML, Vidal-Abarca MR, Sánchez-Montoya MM, Aalba-Tercedor J et al (2002) Las riberas de los ríos mediterráneos y su calidad: el uso del índice QBR. Limnetica 21:135–148

    Google Scholar 

  30. Acosta R, Ríos B, Rieradevall M, Prat M (2009) Propuesta de un protocolo de evaluación de la calidad ecológica de ríos andinos (CERA) y su aplicación a dos cuencas en Ecuador y Perú. Limnetica 28:35–64

    Google Scholar 

  31. Sirombra MG, Mesa LM (2012) A method for assessing the ecological quality of riparian forests in subtropical Andean streams: QBR index. Ecol Indic 20:324–331

    Article  Google Scholar 

  32. Colwell SR, Hix D (2008) Adaptation of the QBR index for use in riparian forests of central Ohio. In: Proceedings of the 16th central hardwood forest conference. USDA Forest Service. GTR NRS-P-24, pp 331–340

    Google Scholar 

  33. Munné AL, Triapu C, Sola L, Oivella M et al (2012) Comparing chemical and ecological status in Catalan Rivers: analysis of river quality status following the water framework directive. In: Guasch H et al (eds) Emerging and priority pollutants in rivers: bringing science into river management plans, vol 19, The handbook of environmental chemistry. Springer-Verlag, Berlin/Heidelberg, pp 243–266

    Chapter  Google Scholar 

  34. Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523

    Article  CAS  Google Scholar 

  35. Kelly MG, Cazaubon A, Coring E, Dell’Uomo A et al (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224

    Article  Google Scholar 

  36. Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A et al (2006) European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566:211–234

    Article  CAS  Google Scholar 

  37. Pont D, Hugueny B, Rogers C (2007) Development of a fish-based index for the assessment of river health in Europe: the European Fish Index. Fish Manag Ecol 14:427–439

    Article  Google Scholar 

  38. Urban N, Swihart R, Malloy M, Dunning J Jr (2012) Improving selection of indicator species when detection is imperfect. Ecol Indic 15:188–197

    Article  Google Scholar 

  39. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  40. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  Google Scholar 

  41. González E, Boudreau L, Hugron S, Poulin M (2013) Can indicator species predict restoration outcomes early in the monitoring process? A case study with peatlands. Ecol Indic 32:232–238

    Article  Google Scholar 

  42. Anas M, Scott K, Wissel B (2013) Suitability of presence vs. absence indicator species to characterize stress gradients: lessons from zooplankton species of boreal lakes. Ecol Indic 30:90–99

    Article  Google Scholar 

  43. Alba-Tercedor J, Jáimez-Cuéllar P, Álvarez M, Avilés J et al (2004) Caracterización del estado ecológico de los ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP). Limnetica 21:175–185

    Google Scholar 

  44. Pardo I, Álvarez M, Casas J, Moreno JL et al (2004) El hábitat de los ríos mediterráneos. Diseño de un índice de diversidad de hábitat. Limnetica 21:115–133

    Google Scholar 

  45. CEMAGREF (1982) Étude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Division Qualité des Eaux Cemagref Lyon. Agence de l’Eau Rhône-Méditerranée-Corse, Lyon

    Google Scholar 

  46. Vieira C, Agular FC, Ferreira MT (2014) The relevance of bryophytes in the macrophyte-based reference conditions in Portuguese rivers. Hydrobiologica 737:245–264

    Article  CAS  Google Scholar 

  47. Guo ZH, Miao XF (2010) Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J Central South Univ Technol 17:770–777

    Article  CAS  Google Scholar 

  48. Ferreira MT, Rodriguez-Gonzalez PM, Aguiar F, Albequerque A (2005) Assessing biotic integrity in Iberian rivers: development of a multimetric plant index. Ecol Indic 5:137–149

    Article  Google Scholar 

  49. Hussner A (2010) NOBANIS – invasive alien species fact sheet – Azolla filiculoides. Online Database of the European Network on Invasive Alien Species – NOBANIS

    Google Scholar 

  50. Garcia-Murill P, Fernandez-Zamudio R, Cirujano S, Sousa A, Espinar J (2007) The invasion of Doñana National Park by the mosquito fern Azolla filiculoides Lam. Limnetica 26:243–250

    Google Scholar 

  51. Mack JJ, Kentula ME (2010) Metric similarity in vegetation-based wetland assessment methods. EPA-600-R-10-140. U.S. Environmental Protection Agency, Office of Water, NHEERL Corvallis

    Google Scholar 

  52. Karr JR, Chu EW (1999) Restoring life in running waters: better biological monitoring. Island, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siobhan Fennessy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fennessy, S., Ibañez, C., Munné, A., Caiola, N., Kirchner, N., Sola, C. (2015). Biological Indices Based on Macrophytes: An Overview of Methods Used in Catalonia and the USA to Determine the Status of Rivers and Wetlands. In: Munné, A., Ginebreda, A., Prat, N. (eds) Experiences from Surface Water Quality Monitoring. The Handbook of Environmental Chemistry, vol 42. Springer, Cham. https://doi.org/10.1007/698_2015_347

Download citation

Publish with us

Policies and ethics