Skip to main content

Reusing Landfill Leachate Within the Framework of a Proper Management of Municipal Landfills

  • Chapter
  • First Online:
Wastewater Reuse and Current Challenges

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 44))

  • 1752 Accesses

Abstract

The possibility of reusing leachate substances for agronomical purposes might be of interest, especially in arid areas when used in addition to the leachate water content. This study presents a simple procedure for the revegetation of the walls of closed landfills, reusing the leachate as a fertigant. The results demonstrated the real possibility of employing blended leachate as a fertigant for the revegetation of the walls of closed landfills. The native plants Lepidium sativum, Lactuca sativa and Atriplex halimus, which suit the local climate, were chosen for this study in Southern Italy. The methodology was structured into three phases: (i) early-stage toxicity assessment phase (apical root length and germination tests), (ii) adult plant resistance assessment phase and (iii) soil properties verification phase. The rationale of the proposed approach was first to look at the distinctive qualities and the potential toxicity in landfill leachates for fertigation purposes. Afterwards, through specific tests, the plants used were ranked in terms of resistance to the aqueous solution that contained leachate. Finally, after long-term irrigation, any possible worsening of soil properties was evaluated. In particular, the plants maintained good health when leachate was blended at concentrations of lower than 25% and 5%, respectively, for Atriplex halimus and Lepidium sativum. Irrigation tests showed good resistance of the plants, even at dosages of 112 and 133.5 mm/m2, at maximum concentrations of 25% and 5%, respectively, for Atriplex halimus and Lepidium sativum. The analysis of the total chlorophyll content and of aerial parts dried weight confirmed the results reported above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANOVA:

Analysis of variance

AOP:

Advanced oxidation process

BOD:

Biochemical oxygen demand

COD:

Chemical oxygen demand

DMSO:

Dimethylsulfoxide

DOC:

Dissolved organic carbon

EB:

Electron beam

EC50 :

Half maximal effective concentration

ECP:

Electrochemical peroxidation

GI:

Germination index

LOEC:

Lowest observed effect concentration

MATC:

Maximum acceptable toxic concentration

NOEC:

Not observed effect concentration

PEC:

Photoelectrochemical

TSS:

Total suspended solid

US:

Ultrasound

UV:

Ultraviolet

VSS:

Volatile suspended solid

References

  1. Tchobanoglous G, Kreith F (2002) Handbook of solid waste management. McGraw-Hill, New York

    Google Scholar 

  2. El-Fadelf M, Findikakis AN, Leckie JO (1997) Environmental impacts of solid waste landfilling. J Environ Manag 50(1):1–25

    Article  Google Scholar 

  3. Robinson AH (2005) Landfill leachate treatment. Membr Technol 12:6–12

    Article  Google Scholar 

  4. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493

    Article  CAS  Google Scholar 

  5. Foo KY, Hameed BH (2009) An overview of landfill leachate treatment via activated carbon adsorption process. J Hazard Mater 171(1–3):54–60

    Article  CAS  Google Scholar 

  6. Bashir MJK, Isa MH, Kutty SRM, Awang ZB, Aziz HA, Mohajeri S, Farooqi IH (2009) Landfill leachate treatment by electrochemical oxidation. Waste Manag 29(9):2534–2541

    Article  CAS  Google Scholar 

  7. Harmsen J (1983) Identification of organic compounds in leachate from a waste tip. Water Res 17(6):699–705

    Article  CAS  Google Scholar 

  8. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV (2006) Landfill leachate treatment methods: a review. Environ Chem Lett 4(1):51–61

    Article  CAS  Google Scholar 

  9. Di Iaconi C, De Sanctis M, Rossetti S, Mancini A (2011) Bio-chemical treatment of medium-age sanitary landfill leachates in a high synergy system. Process Biochem 46(12):2322–2329

    Article  Google Scholar 

  10. Kurniawana TA, Wai-Hung L, Chan GYS (2006) Degradation of recalcitrant compounds from stabilized landfill leachate using a combination of ozone-GAC adsorption treatment. J Hazard Mater 137:443–455

    Article  Google Scholar 

  11. Christensen TH, Cossu R, Stegmann R (1992) Landfilling of waste: leachate. Elsevier Applied Science, London/New York, pp 65–88

    Google Scholar 

  12. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci Total Environ 409(20):4141–4166

    Article  CAS  Google Scholar 

  13. Jiang Z, Yang H, Sun L, Shi S (2002) Integrated assessment for aerobic biodegradability of organic substances. Chemosphere 48:133–138

    Article  CAS  Google Scholar 

  14. Yang D, Englehardt JD (2007) Electrochemical oxidation for landfill leachate treatment. Waste Manag 27(3):380–388

    Article  Google Scholar 

  15. Amokrane A, Comel C, Veron J (1997) Landfill leachates pretreatment by coagulation-flocculation. Water Res 31(11):2775–2782

    Article  CAS  Google Scholar 

  16. Gupta SK, Singh G (2007) Assessment of the efficiency and economic viability of various methods of treatment of sanitary landfill leachate. Environ Monit Assess 135(1–3):107–117

    Article  CAS  Google Scholar 

  17. Akgul D, Aktan CK, Yapsakli K (2013) Treatment of landfill leachate using UASB-MBR-SHARON-Anammox configuration. Biodegradation 24(3):399–412

    Article  CAS  Google Scholar 

  18. Campagna M, Cakmakci M, Yaman FB (2013) Molecular weight distribution of a full-scale landfill leachate treatment by membrane bioreactor and nanofiltration membrane. Waste Manag 33(4):866–870

    Article  CAS  Google Scholar 

  19. Moravia WG, Amaral MCS, Lange LC (2013) Evaluation of landfill leachate treatment by advanced oxidative process by Fenton's reagent combined with membrane separation system. Waste Manag 33(1):89–101

    Article  CAS  Google Scholar 

  20. Schiopu AM, Piuleac GC, Cojocaru C (2012) Reducing environmental risk of landfills: leachate treatment by reverse osmosis. Environ Eng Manag J 11(12):2319–2331

    CAS  Google Scholar 

  21. Mahmoudkhani R, Hassani AH, Torabian A (2012) Study on high-strength anaerobic landfill leachate treatability by membrane bioreactor coupled with reverse osmosis. Int J Environ Res 6(1):129–138

    CAS  Google Scholar 

  22. Migliorini FL, Braga NA et al (2011) Anodic oxidation of wastewater containing the Reactive Orange 16 dye using heavily boron-doped diamond electrodes. J Hazard Mater 192(3):1683–1689

    Article  CAS  Google Scholar 

  23. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  24. Zupancic JM, Zupancic M, Griessler B, Zrimec T, Selih A, Bukovec VS, Vrhovšek PD (2009) Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination 246(1):157–168

    Google Scholar 

  25. Cheng CY, Chu LM (2007) Phytotoxicity data safeguard the performance of the recipient plants in leachate irrigation. Environ Pollut 145(1):195–202

    Article  CAS  Google Scholar 

  26. Gros R, Poulenard J, Jocteur Monrozier L, Faivre P (2006) Soil physico-chemical changes following application of municipal solid waste leachates to grasslands. Water Air Soil Pollut 169:81–100

    Article  CAS  Google Scholar 

  27. Smesrud JK, Duvendack GD, Obereiner JM, Jordahl JL, Madison MF (2012) Practical salinity management for leachate irrigation to poplar trees. Int J Phytoremediation 14(1):26–46

    Article  Google Scholar 

  28. Coyle DR, Zalesny JA, Zalesny RS, Wiese AH (2011) Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna. Int J Phytoremediation 13:845–858

    Article  Google Scholar 

  29. Dimitriou I, Aronsson P, Weih M (2006) Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate. Bioresour Technol 97(1):150–157

    Article  CAS  Google Scholar 

  30. APHA, AWWA, WPCF (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  31. Glenn EP, Nelson SG, Ambrose B, Martinez R, Soliz D, Pabendinskas V, Hultine K (2012) Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environ Exp Bot 83:62–72

    Article  CAS  Google Scholar 

  32. Nemat Alla MM, Khedr AA, Serag MM, Abu-Alnaga AZ, Nada RM (2012) Regulation of metabolomics in A. Halimus growth under salt and drought stress. Plant Growth Regul 67:281–304

    Article  CAS  Google Scholar 

  33. Environmental Protection Agency (EPA) (1996) Ecological effects test guidelines OPPTS 850.4200. Seed germination/root elongation toxicity test EPA 712-C-96-154

    Google Scholar 

  34. Istituto di Ricerca Sulle Acque (IRSA) (1983) Analisi della fitotossicità della sostanza organica in decomposizione mediante bioassaggio L. sativum. Quad IRSA 64: 81–83

    Google Scholar 

  35. Devare M, Bahadir M (1994) Biological monitoring of landfill leachate using plants and luminescent bacteria. Chemosphere 28(2):261–271

    Article  CAS  Google Scholar 

  36. Marchiol L, Mondini C, Leita L, Zerbi G (1999) Effects of municipal waste leachate on seed germination in soil-compost mixtures. Restor Ecol 7(2):155–161

    Article  Google Scholar 

  37. Belkheiria O, Mulas M (2013) The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ Exp Bot 86:17–28

    Article  Google Scholar 

  38. Mateos-Naranjo E, Andrades-Moreno L, Cambrolle J, Perez-Martin A (2013) Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: ecotoxicological implications. Ecotoxicol Environ Saf 90:136–142

    Article  CAS  Google Scholar 

  39. Tapia Y, Diaz O, Pizarro C, Segura R, Vines M, Zúñiga G, Moreno-Jiménez E (2013) Atriplex atacamensis and Atriplex halimus resist as contamination in Pre-Andean soils (northern Chile). Sci Total Environ 450–451:188–196

    Article  Google Scholar 

  40. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  41. UNI EN (1999). Ente Nazionale Italiano di Unificazione, Metodo EN 13037: soil improvers and growing media - determination of pH. www.uni.com

  42. UNI EN (1999). Ente Nazionale Italiano di Unificazione, Metodo EN 13038: soil improvers and growing media – determination of electrical conductivity. www.uni.com

  43. Veech JA (2012) Significance testing in ecological null models. Theor Ecol 5:611–616

    Article  Google Scholar 

  44. Ledwina T, Wylupek G (2012) Nonparametric tests for stochastic ordering. Test 21(4):730–756

    Article  Google Scholar 

  45. Anscombe FJ, Tukey JW (1963) The examination and analysis of residuals. Technometrics 161

    Google Scholar 

  46. Belz RG, Cedergreen N, Duke SO (2011) Herbicide hormesis – can it be useful in crop production? Weed Res 51:321–332

    Article  Google Scholar 

  47. Mahapatra K, Ramteke DS, Paliwal LJ, Naik NK (2013) Agronomic application of food processing industrial sludge to improve soil quality and crop productivity. Geoderma 207–208:205–211

    Article  Google Scholar 

  48. Peverly J, Steenhuis T, Richards B (1994). Long term fate of land-applied wastewater sludge. Annual Report. Cornell University, Ithaca

    Google Scholar 

  49. Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) (2012) Rapporto rifiuti urbani. Servizio Comunicazione ISPRA Report 163-2012

    Google Scholar 

Download references

Acknowledgements

The experimental work was performed within the strategic project PS_057 “Ottimizzazione e recupero ambientale di discariche da RSU”, co-funded by Apulia Region and the European Commission under the POR Puglia 2000-2006 Misura 3.13 “Ricerca e Sviluppo Tecnologico”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mascolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Del Moro, G. et al. (2014). Reusing Landfill Leachate Within the Framework of a Proper Management of Municipal Landfills. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Wastewater Reuse and Current Challenges . The Handbook of Environmental Chemistry, vol 44. Springer, Cham. https://doi.org/10.1007/698_2014_325

Download citation

Publish with us

Policies and ethics