Skip to main content

Advanced Technologies for Emerging Contaminants Removal in Urban Wastewater

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 45))

Abstract

Human health can be adversely affected through lack of access to drinking water, inadequate sanitation, consumption of contaminated freshwater and seafood, and exposure to contaminated bathing water. For example, bioaccumulation of persistent organic contaminants may raise health concerns in vulnerable population groups. The wide range of “contaminants of emerging concern” present in European waters is a growing environmental and human concern. These substances are used in pharmaceuticals, personal care, and other consumer products, and their adverse effects have only recently become apparent. Understanding of their sources, emissions, levels, and effects in the aquatic environment is also limited. In this chapter, we review the advanced technologies recently investigated for the successful elimination of such contaminants present in urban municipal wastewater treatment plant effluents. An overview on the microcontaminants’ behavior throughout conventional and advanced biological systems is also presented, stressing the important buffer effect of their adsorption on supported biofilm. It has been also stressed that combination of membrane filtration technologies and biological treatment avoids secondary clarification and tertiary steps. The use of membranes for wastewater treatment has rapidly increased in the last years due to the exceptional high-quality standards typically for reusing purposes given. Finally, advanced chemical and biological oxidation technologies must be efficient not only in removing microcontaminants but also pathogens and microorganisms from treated water for reusing applications. For instance, the elimination of antibiotics which may lead to proliferation of antibiotic resistance in pathogenic or nonpathogenic microorganisms must be a target jointly with contaminants of emerging concern removal from treated water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AOPs:

Advanced oxidation processes

APCAs:

Aminopolycarboxylic acids

AR:

Antibiotic resistance

ARB:

Antibiotic-resistant bacteria

CAS:

Conventional activated sludge

CEC:

Contaminants of emerging concern

COD:

Chemical oxygen demand

DOC:

Dissolved organic carbon

EDDS:

Ethylenediamine-N,N′-disuccinic acid

EDTA:

Ethylenediaminetetraacetic acid

EEA:

European environment agency

EU:

European union

FBBR:

Fixed-bed biofilm reactor

HA:

Humic acids

HS:

Humic substances

LCA:

Life cycle assessment

MBR:

Membrane bioreactor

MDR:

Multidrug resistant

MF:

Microfiltration

MT:

Membrane technology

MTBE:

Methyl-t-butyl ether

MWWTP:

Municipal wastewater treatment plant

NF:

Nanofiltration

NOM:

Natural dissolved organic matter

OPEX:

Operating expenditures

PDBEs:

Polybrominated diphenylethers

PPCPs:

Personal care products

RO:

Reverse osmosis

SBR:

Sequential biomass reactor

TN:

Total nitrogen

UF:

Ultrafiltration

UWWTPs:

Urban wastewater treatment plants

WTPs:

Wastewater treatment plants

References

  1. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, OJ L327 of 22.12.2000, as amended by Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001, OJ L331 of 15.12.2001

    Google Scholar 

  2. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive), OJ L164, 25.6.2008

    Google Scholar 

  3. Environmental Indicator Report (2013) Natural resources and human well-being in a green economy. EEA, Publications Office of the European Union, Luxembourg. doi:10.2800/94121. European Environment Agency: http://www.eea.europa.eu/data-and-maps/indicators/urban-waste-water-treatment/urban-waste-water-treatment-assessment-3

  4. Klavarioti D, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  5. Le-Minh N, Khan SJ, Drewes JE et al (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Res 44(15):4295–4323

    Article  CAS  Google Scholar 

  6. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MA et al (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93(7):1268–1287

    Article  CAS  Google Scholar 

  7. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82(1):1518–1532

    Article  CAS  Google Scholar 

  8. Luo Y, Guo W, Ngo HH et al (2014) A review on the occurrence of micro-pollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641

    Article  Google Scholar 

  9. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17

    Article  CAS  Google Scholar 

  10. Genthe B, Le Roux WJ, Schachtschneider K et al (2013) Health risk implications from simultaneous exposure to multiple environmental contaminants. Ecotoxicol Environ Saf 93:171–179

    Article  CAS  Google Scholar 

  11. Vandenberg LN (2014) Low-dose effects of hormones and endocrine disruptors. Vitam Horm 94:129–165

    Article  Google Scholar 

  12. Loos R, Carvalho R, Antonio D et al (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47:6475–6487

    Article  CAS  Google Scholar 

  13. Kostich M, Batt A, Lazorchak J (2014) Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk evaluation. Environ Pollut 184:354–359

    Article  CAS  Google Scholar 

  14. Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  15. Barnes KK, Kolpin DW, Furlong ET et al (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States. I). Groundwater. Sci Total Environ 402:192–200

    Article  CAS  Google Scholar 

  16. Petrovic M, Eljarrat E, Lopez de Alda MJ et al (2004) Endocrine disrupting compounds and other emerging contaminants in the environment: a survey on new monitoring strategies and occurrence data. Anal Bioanal Chem 378:549–562

    Article  CAS  Google Scholar 

  17. Petrovic M, Barceló D (2007) Analysis, fate and removal of pharmaceuticals in the water cycle. In: Petrovic M, Barceló D (eds) Comprehensive analytical chemistry, vol 50. Elsevier, Amsterdam, pp 1–564

    Google Scholar 

  18. Diaz-Cruz MS, Garcia-Galan MJ, Guerra P et al (2009) Analysis of selected emerging contaminants in sewage sludge. TrAC Trends Anal Chem 28(11):1263–1275

    Article  CAS  Google Scholar 

  19. Casellas C, Chiron S, Fenet H et al (2013) Environmental transformation of organic substances in the context of aquatic ecotoxicology. In: Férard SF, Blaise C (eds) Encyclopaedia of aquatic toxicology. Springer, pp 467–476

    Google Scholar 

  20. Hughes S, Kay P, Brown L (2013) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47:661–677

    Article  CAS  Google Scholar 

  21. Oberlé K, Capdeville MJ, Berthe T et al (2012) Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical centre patients to a receiving environment. Environ Sci Technol 46:1859–1868

    Article  Google Scholar 

  22. Larsen HF, Hauschild MZ, Wenzel H et al (2007) Homogeneous LCA methodology agreed by NEPTUNE and INNOWATECH. Deliverable 4.1. EC Project “NEPTUNE”, contract No.:036845. www.eu-neptune.org

  23. Rodriguez-Garcia G, Molinos-Senante M, Hospido A et al (2011) Environmental and economic profile of six typologies of wastewater treatment plants. Water Res 45(18):5997–6010

    Article  CAS  Google Scholar 

  24. Wenzel H, Larsen HF, Clauson-Kaas J et al (2008) Weighing environmental advantages and disadvantages of advanced wastewater treatment of micro-pollutants using environmental life cycle assessment. Water Sci Technol 57(1):27–32

    Article  CAS  Google Scholar 

  25. Buttiglieri G, Knepper TP (2008) Removal of emerging contaminants. In: Petrovic M, Barceló D (eds) Wastewater treatment: conventional activated sludge treatment, vol 5 (Part S/2), Handbook of environmental chemistry. Springer, Berlin, pp 1–35

    Google Scholar 

  26. Padhye LP, Yao H, Kung’u FT et al (2014) Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res 51:266–276

    Article  CAS  Google Scholar 

  27. Collado N, Buttiglieri G, Marti E et al (2013) Effects on activated sludge bacterial community exposed to sulfamethoxazole. Chemosphere 93(1):99–106

    Article  CAS  Google Scholar 

  28. Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S et al (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47(14):5200–5210

    Article  Google Scholar 

  29. Wijekoon KC, Hai FI, Kang J et al (2013) The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresour Technol 144:247–254

    Article  CAS  Google Scholar 

  30. Bernhard M, Muller J, Knepper J (2006) Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res 40:3419–3428

    Article  CAS  Google Scholar 

  31. Chen J, Huang X, Lee D (2008) Bisphenol A removal by a membrane bioreactor. Process Biochem 43:451–456

    Article  CAS  Google Scholar 

  32. Kim SD, Cho J, Kim IS et al (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021

    Article  CAS  Google Scholar 

  33. Radjenović J, Petrović M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43(3):831–841

    Article  Google Scholar 

  34. Radjenovic J, Matosic M, Mijatovic I et al (2008) Membrane bioreactor (MBR) as an advanced wastewater treatment technology. In: Petrovic M, Barceló D (eds) Handbook of environmental chemistry: emerging contaminants from industrial and municipal waste, vol 5 (Part S/2). Springer, Berlin, pp 37–102

    Chapter  Google Scholar 

  35. Cirja M, Ivashechkin P, Schaeffer A et al (2008) Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev Environ Sci Biotechnol 7:61–78

    Article  CAS  Google Scholar 

  36. Gallucci F, Basile A, Hai FI (2011) Introduction—a review of membrane reactors. In: Basile A, Gallucci F (eds) Membranes for membrane reactors: preparation, optimization and selection. Wiley, New York, p 1

    Chapter  Google Scholar 

  37. Ferrero G, Rodriguez-Roda I, Comas J (2012) Automatic control systems for submerged membrane bioreactors: a state-of-the-art review. Water Res 46(11):3421–3433

    Article  CAS  Google Scholar 

  38. Gabarrón S, Ferrero G, Dalmau M et al (2014) Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors. J Environ Manage 134:8–14

    Article  Google Scholar 

  39. Ferrero G, Monclús H, Buttiglieri G et al (2011) Automatic control system for energy optimization in membrane bioreactors. Desalination 268:276–280

    Article  CAS  Google Scholar 

  40. Judd S (2011) Principles and applications of membrane bioreactors for water and wastewater treatment. In: Judd S (ed) The MBR book, 2nd edn. Elsevier, London

    Google Scholar 

  41. Andreottola G, Foladori P, Ragazzi M et al (2012) Treatment of winery wastewater in a sequencing batch biofilm reactor. Water Sci Technol 45(12):347–354

    Google Scholar 

  42. Andreottola G, Foladori P, Nardelli P et al (2005) Treatment of winery wastewater in a full-scale fixed bed biofilm reactor. Water Sci Technol 51(1):71–79

    CAS  Google Scholar 

  43. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409:4141–4166

    Article  CAS  Google Scholar 

  44. Vieno NM, Harkki H, Tuhkanen T et al (2007) Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant. Environ Sci Technol 41(14):5077–5084

    Article  CAS  Google Scholar 

  45. Shannon M, Bohn P, Elimelech M et al (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  Google Scholar 

  46. Malato S, Fernández-Ibañez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  47. Prieto-Rodríguez L, Oller I, Klamerth N et al (2013) Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res 47:1521–1528

    Article  Google Scholar 

  48. Klamerth N, Malato S, Agüera A et al (2013) Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: a comparison. Water Res 47:833–840

    Article  CAS  Google Scholar 

  49. Auger JP, Richard C (1996) Reactive species produced on irradiation at 365 nm of aqueous solutions of humic acids. J Photochem Photobiol A 93:193–198

    Article  Google Scholar 

  50. Farré MJ, Doménech X, Peral J (2007) Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid. J Hazard Mater 147:167–174

    Article  Google Scholar 

  51. Kepczynski M, Czosnyka A, Nowakowska M (2007) Photooxidation of phenol in aqueous nanodispersion of humic acid. J Photochem Photobiol A 185:198–205

    Article  CAS  Google Scholar 

  52. Lipczynska-Kochany E, Kocjany J (2008) Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. Chemosphere 73:745–750

    Article  CAS  Google Scholar 

  53. Yuan Z, Van Briesen JM (2006) The formation of intermediates in EDTA and NTA biodegradation. Environ Eng Sci 23:533–544

    Article  CAS  Google Scholar 

  54. Zhang LH, Zhu ZL, Zhang RH et al (2008) Extraction of copper from sewage sludge using biodegradable chelant EDDS. J Environ Sci 20:970–974

    Article  CAS  Google Scholar 

  55. Orama M, Hyvönen H, Saarinen H et al (2002) Complexation of [S, S] and mixed stereoisomers of N,N′-ethylenediaminedisuccinic acid (EDDS) with Fe(III), Cu(II), Zn(II) and Mn(II) ions in aqueous solution. J Chem Soc Dalton Trans 24:4644–4648

    Article  Google Scholar 

  56. Klamerth N, Malato S, Maldonado MI et al (2011) Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catal Today 161:241–246

    Article  CAS  Google Scholar 

  57. Klamerth N, Malato S, Agüera A et al (2012) Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection. Environ Sci Technol 46:2885–2892

    Article  CAS  Google Scholar 

  58. Chelme-Ayala P, Smith DW, El-Din MG (2009) Membrane concentrate management options: a comprehensive critical review. Can J Civ Eng 36(6):1107–1119

    Article  CAS  Google Scholar 

  59. Pérez-González A, Urtiaga AM, Ibañez R et al (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283

    Article  Google Scholar 

  60. Luo J, Ding L, Qi B et al (2011) A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater. Bioresour Technol 102:7437–7442

    Article  CAS  Google Scholar 

  61. Chona K, Choa J, Shon HK (2013) A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: removal of nutrients and micropollutants, and characterization of membrane foulants. Bioresour Technol 141:109–116

    Article  Google Scholar 

  62. Karhu M, Kuokkanen T, Rämö J et al (2013) Performance of a commercial industrial-scale UF-based process for treatment of oily wastewaters. J Environ Manage 128:413–420

    Article  CAS  Google Scholar 

  63. Nguyen LN, Hai FI, Kang J et al (2013) Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeter Biodegr 85:474–482

    Article  CAS  Google Scholar 

  64. Zaviska F, Drogui P, Grasmick A et al (2013) Nanofiltration membrane bioreactor for removing pharmaceutical compounds. J Membr Sci 429:121–129

    Article  CAS  Google Scholar 

  65. Röhricht M, Krisam J, Weise U et al (2010) Elimination of pharmaceuticals from wastewater by submerged nanofiltration plate modules. Desalination 250(3):1025–1026

    Article  Google Scholar 

  66. Liu M, Zhu H, Dong B et al (2013) Submerged nanofiltration of biologically treated molasses fermentation wastewater for the removal of melanoidins. Chem Eng J 223:388–394

    Article  CAS  Google Scholar 

  67. Cartagena P, El Kaddouri M, Cases V et al (2013) Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR-NF/RO treatment. Sep Purif Technol 110:132–143

    Article  CAS  Google Scholar 

  68. Al-Rifai JH, Khabbaz H, Schäfer AI (2011) Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems. Sep Purif Technol 77(1):60–67

    Article  CAS  Google Scholar 

  69. Vergili I (2013) Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J Environ Manage 127:177–187

    Article  CAS  Google Scholar 

  70. Van Der Bruggen B, Lejon L, Vandecasteele C (2003) Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environ Sci Technol 37(17):3733–3738

    Article  Google Scholar 

  71. Wei X, Wang Z, Wang FJ et al (2010) Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: membrane fouling identification and cleaning. Desalination 251:167–175

    Article  CAS  Google Scholar 

  72. Diez V, Ezquerra D, Cabezas JL et al (2014) A modified method for evaluation of critical flux, fouling rate and in situ determination of resistance and compressibility in MBR under different fouling conditions. J Membr Sci 453:1–11

    Article  CAS  Google Scholar 

  73. Siegrist H, Joss A (2012) Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes. Water Sci Technol 66(6):1369–1376

    Article  CAS  Google Scholar 

  74. Westerhoff P, Moon H, Minakata D et al (2009) Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities. Water Res 43:3992–3998

    Article  CAS  Google Scholar 

  75. Zhou T, Lim TT, Chin SS et al (2011) Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment. Chem Eng J 166(3):932–939

    Article  CAS  Google Scholar 

  76. Dudziak M (2012) Retention of mycoestrogens in nanofiltration. Impact of feed water chemistry, membrane properties and operating process conditions. Environ Prot Eng 38(2):5–17

    CAS  Google Scholar 

  77. Dolar D, Košutić K, Ašperger D et al (2013) Removal of glucocortico steroids and anaesthetics from water with RO/NF membranes. Chem Biochem Eng Q 27(1):1–6

    CAS  Google Scholar 

  78. Narbaitz RM, Rana D, Dang HT et al (2013) Pharmaceutical and personal care products removal from drinking water by modified cellulose acetate membrane: field testing. Chem Eng J 225:848–856

    Article  CAS  Google Scholar 

  79. Nghiem LD, Coleman PJ, Espendiller C (2010) Mechanisms underlying the effects of membrane fouling on the nanofiltration of trace organic contaminants. Desalination 250(2):682–687

    Article  CAS  Google Scholar 

  80. Chang EE, Chang YC, Liang CH et al (2012) Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole, and triclosan. J Hazard Mater 221–222:19–27

    Article  Google Scholar 

  81. Botton S, Verliefde ARD, Quach NT et al (2012) Surface characterisation of biofouled NF membranes: role of surface energy for improved rejection predictions. Water Sci Technol 66(10):2122–2130

    Article  CAS  Google Scholar 

  82. López-Muñoz MJ, Sotto A, Arsuaga JM (2012) Nanofiltration removal of pharmaceutically active compounds. Desalin Water Treat 42(1–3):138–143

    Article  Google Scholar 

  83. Joss C, Baenninger P, Foa S et al (2011) Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2 addition as scaling control. Water Res 45:6141–6151

    Article  CAS  Google Scholar 

  84. Kappel C, Yasadi K, Temmink H et al (2013) Electrochemical phosphate recovery from nanofiltration concentrates. Sep Purif Technol 120:437–444

    Article  CAS  Google Scholar 

  85. Kappel C, Kemperman AJB, Temmink H et al (2014) Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment. J Membr Sci 453:359–368

    Article  CAS  Google Scholar 

  86. Ludzack FJ, Noran DK (1965) Tolerance of high salinities by conventional wastewater treatment processes. J Water Pollut Control Fed 37(10):1404–1416

    CAS  Google Scholar 

  87. Kargì F, Dinçer AR (1999) Salt inhibition effects in biological treatment of saline wastewater in RBC. J Environ Eng 125(10):966–971

    Article  Google Scholar 

  88. Aloui F, Khoufi S, Loukil S et al (2009) Performances of an activated sludge process for the treatment of fish processing saline wastewater. Desalination 246(1–3):389–396

    Article  CAS  Google Scholar 

  89. Michael I, Frontistis Z, Fatta-Kassinos D (2013) Removal of pharmaceuticals from environmentally relevant matrices by advanced oxidation processes (AOPs). Compr Anal Chem 62:345–407

    Article  CAS  Google Scholar 

  90. Benner J, Slhi E, Ternes T et al (2008) Ozonation of reverse osmosis concentrate: kinetics and efficiency of beta blocker oxidation. Water Res 42:3003–3012

    Article  CAS  Google Scholar 

  91. Justo A, González O, Aceña J et al (2013) Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone. J Hazard Mater 263:268–274

    Article  CAS  Google Scholar 

  92. Miralles-Cuevas S, Audino F, Oller I et al (2014) Pharmaceuticals removal from natural water combining nanofiltration and advanced tertiary treatments (solar photo-Fenton, photo-Fenton like Fe (III)-EDDS complex and ozonation). Sep Purif Technol 122:515–522

    Article  CAS  Google Scholar 

  93. Bagastyo AY, Keller J, Poussade Y et al (2011) Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants. Water Res 45(7):2415–2427

    Article  CAS  Google Scholar 

  94. Lu J, Fan L, Roddick FA (2013) Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation. Chemosphere 93(4):683–688

    Article  CAS  Google Scholar 

  95. Martínez F, López-Muñoz MJ, Aguado J et al (2013) Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants. Water Res 47(15):5647–5658

    Article  Google Scholar 

  96. Pablos C, Van Grieken R, Marugán J et al (2012) Simultaneous photocatalytic oxidation of pharmaceuticals and inactivation of Escherichia coli in wastewater treatment plant effluents with suspended and immobilised TiO2. Water Sci Technol 65(11):2016–2023

    Article  CAS  Google Scholar 

  97. Pablos C, Marugán J, Van Grieken R et al (2013) Emerging micropollutants oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Res 47(2013):1237–1245

    Article  CAS  Google Scholar 

  98. Gerrity D, Gamage S, Holady JC et al (2011) Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res 45:2155–2165

    Article  CAS  Google Scholar 

  99. Pauwels B, Verstraete W (2006) The treatment of hospital wastewater: an appraisal. J Water Health 4(4):405–416

    CAS  Google Scholar 

  100. Rizzo L, Fiorentino A, Anselmo A (2013) Advanced treatment of urban wastewater by UV radiation: effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere 92:171–176

    Article  CAS  Google Scholar 

  101. Rizzo L, Fiorentino A, Anselmo A (2012) Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream. Sci Total Environ 427–428:263–268

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Spanish Ministry of Science and Innovation for the financial support under the AQUAFOTOX (reference CTQ2012-38754-C03-01) and AQUASUN project (reference CTM2011-29143-C03-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Oller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oller, I., Polo-López, I., Miralles-Cuevas, S., Fernández-Ibáñez, P., Malato, S. (2014). Advanced Technologies for Emerging Contaminants Removal in Urban Wastewater. In: Fatta-Kassinos, D., Dionysiou, D., Kümmerer, K. (eds) Advanced Treatment Technologies for Urban Wastewater Reuse . The Handbook of Environmental Chemistry, vol 45. Springer, Cham. https://doi.org/10.1007/698_2014_319

Download citation

Publish with us

Policies and ethics