Advertisement

Analysis and Occurrence of Personal Care Products in Biota Samples

  • Pablo Gago-FerreroEmail author
  • M. Silvia Díaz-Cruz
  • Damià Barceló
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 36)

Abstract

Personal care products (PCPs) constitute a large group of emerging environmental pollutants, potentially hazardous compounds that have been receiving steadily growing attention over the last decade. Because of the lipophilic properties of these substances, it is expected that they can reach and accumulate in tissues of aquatic organisms in different trophic levels. Their continuous environmental input may lead to a high long-term concentration and promote continual but unnoticed adverse effects on aquatic and terrestrial organisms.

This chapter summarizes the developed analytical procedures for the analysis of four important different families of PCPs: UV filters, synthetic musk fragrances, antimicrobials, and parabens. Sampling extraction and preparation, instrumental analysis, and method performance have been considered and discussed. The present work also summarizes the available data on the presence of these substances in biota samples, providing ranges of concentration for the different compounds in the species that have been evaluated in each study.

Keywords

Analysis Antimicrobials Biota Fragrances Occurrence Parabens Personal care products UV filters 

Abbreviations

2AMK

2-Amino musk ketone

2AMX

2-Amino musk xylene

3BC

3-Benzylidene camphor

4AMX

4-Amino musk xylene

4DHB

4-Dihydroxybenzophenone

4MBC

4-Methylbenzylidene camphor

ACN

Acetonitrile

ADBI

Celestolide

AHMI

Phantolide

AHTN

Tonalide

APCI

Atmospheric pressure chemical ionization

APPI

Atmospheric pressure photoionization

ATII

Traseolide

BCF

Bioaccumulation factor

BeP

Benzyl paraben

BM-DBM

Butyl methoxydibenzoylmethane

BP1

Benzophenone-1

BP2

Benzophenone-2

BP3

Benzophenone-3

BP4

Benzophenone-4

BuP

Butyl paraben

CI

Chemical ionization

d.w.

Dry weight

DCM

Dichloromethane

dSPE

Dispersive solid-phase extraction

ECD

Electron capture detector

EHMC

Ethylhexyl methoxycinnamate

EI

Electron impact

ESI

Electrospray ionization

EtAc

Ethyl acetate

EtP

Ethyl paraben

Et-PABA

Ethylhexyl PABA

f.w.

Fresh weight

GC

Gas chromatography

GC-FID

Gas chromatography with a flame ionization detector

GC–MS

Gas chromatography coupled to mass spectrometry

GC–MS/MS

Gas chromatography coupled to tandem mass spectrometry

GC–NCI-MS

Gas chromatography coupled to negative chemical ionization mass spectrometry

GPC

Gel permeation chromatography

HHCB

Galaxolide

HMS

Homosalate

IAMC

Isoamyl p-methoxycinnamate

IDM

Isopropyl dibenzoylmethane

l.w.

Lipid weight

LC

Liquid chromatography

LC–MS

Liquid chromatography coupled to mass spectrometry

LC–MS/MS

Liquid chromatography coupled to tandem mass spectrometry

MA

Musk ambrette

MAE

Microwave-assisted extraction

MeOH

Methanol

MeP

Methyl paraben

MK

Musk ketone

MLOD

Method limit of detection

MM

Musk moskene

MSPD

Matrix solid-phase dispersion

MSTFA

N-methyl-N-(trimethylsilyl)trifluoroacetamide

MT

Musk tibetene

MTBE

Methyl tert-butyl ether

MTCS

Methyl-triclosan

MX

Musk xylene

OC

Octocrylene

OD-PABA

Ethylhexyl dimethyl PABA

OT

Octyl triazone

PCP

Personal care products

PLE

Pressurized liquid extraction

PrP

Propyl paraben

QuEChERS

Quick, easy, cheap, effective, rugged, and safe

RP-HPLC

Reversed-phase high-performance liquid chromatography

SIM

Selected ion monitoring

SRM

Selected reaction monitoring

TCC

Triclocarban

TCS

Triclosan

UHPLC

Ultrahigh performance liquid chromatography

UV-F

UV filters

WWTP

Wastewater treatment plant

Notes

Acknowledgments

Authors acknowledge the Spanish Ministry of Economy and Competitiveness, project SCARCE (Consolider Ingenio 2010 CSD2009-00065), and the Generalitat de Catalunya (Water and Soil Quality Research Group 2014 SGR 418).

References

  1. 1.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM et al (2002) Environ Sci Tech 36:1202–1211CrossRefGoogle Scholar
  2. 2.
    Kannan K, Reiner JL, Se HY, Perrotta EE et al (2005) Chemosphere 61:693–700CrossRefGoogle Scholar
  3. 3.
    Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2013) Anal Methods 5:355–366CrossRefGoogle Scholar
  4. 4.
    Richardson SD (2012) Anal Chem 84:747–778CrossRefGoogle Scholar
  5. 5.
    Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2012) Anal Bioanal Chem 404:2597–2610CrossRefGoogle Scholar
  6. 6.
    Meinerling M, Daniels M (2006) Anal Bioanal Chem 386:1465–1473CrossRefGoogle Scholar
  7. 7.
    Nagtegaal M, Ternes TA, Baumann W, Nagel R (1997) Umweltchem Ökotoxikol 9:79–86CrossRefGoogle Scholar
  8. 8.
    Balmer ME, Buser HR, Müller MD, Poiger T (2005) Environ Sci Tech 39:953–962CrossRefGoogle Scholar
  9. 9.
    Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2013) J Chromatogr A 1286:93–101CrossRefGoogle Scholar
  10. 10.
    Buser HR, Balmer ME, Schmid P, Kohler M (2006) Environ Sci Tech 40:1427–1431CrossRefGoogle Scholar
  11. 11.
    Zenker A, Schmutz H, Fent K (2008) J Chromatogr A 1202:64–74CrossRefGoogle Scholar
  12. 12.
    Mottaleb MA, Usenko S, O'Donnell JG, Ramirez AJ et al (2009) J Chromatogr A 1216:815–823CrossRefGoogle Scholar
  13. 13.
    Fent K, Zenker A, Rapp M (2010) Environ Pollut 158:1817–1824CrossRefGoogle Scholar
  14. 14.
    Bachelot M, Li Z, Munaron D, Le Gall P et al (2012) Sci Total Environ 420:273–279CrossRefGoogle Scholar
  15. 15.
    Negreira N, Rodriguez I, Rodil R, Rubi E, Cela R (2013) Int J Environ Anal Chem 93:1174–1188CrossRefGoogle Scholar
  16. 16.
    Buchberger W (2011) J Chromatogr A 1218:603–618CrossRefGoogle Scholar
  17. 17.
    Gago-Ferrero P, Alonso MB, Bertozzi CP, Marigo J et al (2013) Environ Sci Tech 47:5619–5625CrossRefGoogle Scholar
  18. 18.
    Gatermann R, Hellou J, Hohnerfuss H, Rimkus G, Zitko V (1999) Chemosphere 38:3431–3441CrossRefGoogle Scholar
  19. 19.
    Fromme H, Otto T, Pilz K (2001) Water Res 35:121–128CrossRefGoogle Scholar
  20. 20.
    Fromme H, Otto T, Pilz K, Neugebauer F (1999) Chemosphere 39:1723–1735CrossRefGoogle Scholar
  21. 21.
    Nakata H (2005) Environ Sci Tech 39:3430–3434CrossRefGoogle Scholar
  22. 22.
    Nakata H, Sasaki H, Takemura A, Yoshioka M et al (2007) Environ Sci Tech 41:2216–2222CrossRefGoogle Scholar
  23. 23.
    Zhang X, Xu Q, Man S, Zeng X et al (2013) Environ Sci Pollut Res 20:311–322CrossRefGoogle Scholar
  24. 24.
    Draisci R, Marchiafava C, Ferretti E, Palleschi L et al (1998) J Chromatogr A 814:187–197CrossRefGoogle Scholar
  25. 25.
    Osemwengie LI, Steinberg S (2003) J Chromatogr A 993:1–15CrossRefGoogle Scholar
  26. 26.
    Osemwengie LI, Gerstenberger SL (2004) J Environ Monit 6:533–539CrossRefGoogle Scholar
  27. 27.
    Rüdel H, Bohmer W, Schröter-Kermani C (2006) J Environ Monit 8:812–823CrossRefGoogle Scholar
  28. 28.
    Hu Z, Shi Y, Cai Y (2011) Chemosphere 85:262–267CrossRefGoogle Scholar
  29. 29.
    Klaschka U, von der Ohe PC, Bschorer A, Krezmer S et al (2013) Environ Sci Pollut Res 20:2456–2471CrossRefGoogle Scholar
  30. 30.
    Duedahl-Olesen L, Cederberg T, Pedersen KH, Hogsbrod A (2005) Chemosphere 61:422–431CrossRefGoogle Scholar
  31. 31.
    Peck AM (2006) Anal Bioanal Chem 386:907–939CrossRefGoogle Scholar
  32. 32.
    Rimkus GG, Wolf M (1995) Chemosphere 30:641–651CrossRefGoogle Scholar
  33. 33.
    Commission O (2004) Hazardous Substances Series, OSPAR CommissionGoogle Scholar
  34. 34.
    Bureau EC (2005) Office for Official Publications of the European CommunitiesGoogle Scholar
  35. 35.
    Okumura T, Nishikawa Y (1996) Anal Chim Acta 325:175–184CrossRefGoogle Scholar
  36. 36.
    Balmer ME, Poiger T, Droz C, Romanin K et al (2004) Environ Sci Tech 38:390–395CrossRefGoogle Scholar
  37. 37.
    Coogan MA, Edziyie RE, La Point TW, Venables BJ (2007) Chemosphere 67:1911–1918CrossRefGoogle Scholar
  38. 38.
    Coogan MA, La Point TW (2008) Environ Toxicol Chem 27:1788–1793CrossRefGoogle Scholar
  39. 39.
    Fair PA, Lee HB, Adams J, Darling C et al (2009) Environ Pollut 157:2248–2254CrossRefGoogle Scholar
  40. 40.
    Kim JW, Ramaswamy BR, Chang KH, Isobe T, Tanabe S (2011) J Chromatogr A 1218:3511–3520CrossRefGoogle Scholar
  41. 41.
    Ramaswamy BR, Kim JW, Isobe T, Chang KH et al (2011) J Hazard Mater 192:1739–1745CrossRefGoogle Scholar
  42. 42.
    Jakimska A, Huerta B, Barganska T, Kot-Wasik A et al (2013) J Chromatogr A 1306:44–58CrossRefGoogle Scholar
  43. 43.
    Huerta B, Jakimska A, Gros M, Rodriguez-Mozaz S, Barceló D (2013) J Chromatogr A 1288:63–72CrossRefGoogle Scholar
  44. 44.
    Singer H, Müller S, Tixier C, Pillonel L (2002) Environ Sci Tech 36:4998–5004CrossRefGoogle Scholar
  45. 45.
    Renz L, Volz C, Michanowicz D, Ferrar K et al (2013) Ecotoxicology 22:632–641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pablo Gago-Ferrero
    • 1
    • 2
    Email author
  • M. Silvia Díaz-Cruz
    • 1
  • Damià Barceló
    • 1
    • 3
  1. 1.Department of Environmental ChemistryInstitute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC)BarcelonaSpain
  2. 2.Laboratory of Analytical Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
  3. 3.Catalan Institute for Water Research (ICRA)Parc Científic i Tecnològic de la Universitat de Girona. C/ Emili GrahitGironaSpain

Personalised recommendations