Skip to main content

Microbiological Water Quality of the Danube River: Status Quo and Future Perspectives

  • Chapter
  • First Online:
The Danube River Basin

Abstract

Fecal microbial pollution is a major problem throughout the Danube River Basin, posing a threat to various types of water use, including drinking water production from river bank filtrates, water supply for agricultural and industrial use, and the role of the river as a recreational space. Fecal microbial pollution is introduced into the river by point sources, such as discharges of treated or untreated sewage from human sources or livestock, and by nonpoint sources, such as urban and agricultural runoff. In addition, fecal input from wildlife may be of importance in specific regions. Despite huge efforts to improve wastewater management in the past decade, in many sections, the river and its tributaries exhibit very high levels of fecal microbial pollution. To assess microbiological water quality, indicators of fecal pollution are used as surrogates for the potential presence of intestinal pathogens. However, the standard indicators cannot provide any reliable information regarding the origin of fecal pollution, nor can their concentration levels be directly related to human health risks for many types of exposure and situations.

The aim of this book chapter is to summarize the historical developments in microbiological water quality research and to reflect the most recent publicly available data on the fecal microbial pollution status of the Danube River. Moreover, the first results on fecal microbial source tracking by molecular biology methods are presented along with their applicability in river water quality monitoring, including the monitoring of riparian wells and alluvial groundwater resources. Finally, a discussion of the general state of water quality and public health is presented concerning (i) the current situation and potential limitations of the Water Framework Directive regarding the microbiological quality elements, (ii) further improvements regarding sampling and monitoring strategies, and (iii) the recently introduced concept of “integrated framework of fecal pollution monitoring and management” and expected further methodological developments in the context of the Danube watershed. Rapid progress in research and development is currently being made in the area of fecal microbial source tracking, pathogen detection, and health risk assessment, and these innovations are also likely to complement basic fecal pollution monitoring programs for river systems such as the Danube in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pomeroy LR, Williams PJLB, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20:28–33

    Article  Google Scholar 

  2. European Parliament & Council (2006) Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Off J L064:37–51

    Google Scholar 

  3. European Council (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J L330:32–54

    Google Scholar 

  4. Schmedtje U, Bachmann J, Behrendt H, Birk S, Biza P, D’Eugenio J, v Gils J, Grath J, Hamchevici C, Hansen W, Interwies E, Kampa E, Lindinger H, Liska I, Popescu L, Popovici M, Pottgiesser T, Sigmund G, Sommerhäuser M, Speck S, Subauer I, Vogel B, Weller P, Winkelmann-Oei G, Zinke A (2005) Danube basin analysis (WFD roof report 2004). The Danube River Basin district - river basin characteristics, impacts of human activities and economic analysis required under article 5, annex II and annex III, and inventory of protected areas required under article 6, annex IV of the EU Water Framework Directive (2000/60/EC) – part A – basin-wide overview. ICPDR, Vienna, 191 pp

    Google Scholar 

  5. Kirschner AKT, Kavka GG, Velimirov B, Mach RL, Sommer R, Farnleitner AH (2009) Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network. Water Res 43:3673–3684

    Article  CAS  Google Scholar 

  6. International Association of Water Supply Companies in the Danube River Catchment Area (IAWD) (2011) Annual report 2009/2010. IAWD c/o Vienna Waterworks, Vienna, Austria (www.iawd.at)

  7. Liska I, Wagner, F, Slobodnik, J (eds) (2008) Joint Danube Survey 2, final scientific report. ICPDR, Vienna (Austria), 242 pp. http://www.icpdr.org/main/activities-projects/joint-danube-survey-2

  8. Heider A (1893) Untersuchungen über die Verunreinigungen der Donau durch Abwasser der Stadt Wien. Das Österreichische Sanitätswesen 6: 53 [In: Prescott SG, Winslow CEA (eds) Water bacteriology with special reference to sanitary water analysis, 6th edn. Wiley/Chapman & Hall, New York/London (1946)]

    Google Scholar 

  9. Brezina E (1906) Die Donau vom Leopoldsberge bis Pressburg, die Abwässer der Stadt Wien und deren Schicksal nach ihrer Einmündung in den Strom. Zeitschrift für Hygiene 53: 369 [In: Prescott SG, Winslow CEA (eds) Water bacteriology with special reference to sanitary water analysis, 6th edn. Wiley/Chapman & Hall, New York/London (1946)]

    Google Scholar 

  10. Lacroix H (1926) Wissenschaftliche Forschungsergebnisse aus dem Gebiete der unteren Donau und des Schwarzen Meeres. IV. Chemische und bakteriologische Untersuchung eines Wassers aus dem Donaudelta. Arch Hydrobiol 16(4):644–648

    Google Scholar 

  11. Joos I (1935) Untersuchungen von Donauwasser und Kanälen auf Typhus-Paratyphus Bazillen. Zentralbl Bakt 1 Abt Orig 135(4/5):266–269

    Google Scholar 

  12. Stundl K (1943) Untersuchungen über den Einfluss des Wassercharakters auf bakterielle Stickstoffumsetzungen. Zeitschr Fisch u Hilfsw 41(1):11–21

    Google Scholar 

  13. Mucha V, Daubner I (1965) Hydromikrobiologie im Rahmen der limnologischen Erforschung der Donau in der CSSR. Arch Hydrobiol Suppl 30:1–23

    Google Scholar 

  14. Megay K (1957) Die Güte des Donauwassers im Linzer Stadtgebiet und die Voraussetzungen für ein Strombad. Naturkundliches Jahrbuch der Stadt Linz 3:51–77

    Google Scholar 

  15. Weber J (1963) Ergebnisse der Enterokokken-Untersuchungen im Donaustrom. 7. Konferenz der Int. Arbeitsgemeinschaft Donauforschung (IAD) der SIL in Smolenice, CSSR. Referate. Hrsg: IAD, Wien, Österreich

    Google Scholar 

  16. Kohl W (1975) Über die Bedeutung bakteriologischer Untersuchungen für die Beurteilung von Fließgewässern, dargestellt am Beispiel der österreichischen Donau. Arch Hydrobiol Suppl 44:392–461

    Google Scholar 

  17. Deufel J (1968) Die Häufigkeit der Enterobakterien, Enterokokken und anaeroben sporenbildenden Bakterien im Oberlauf der Donau bis Ulm. Arch Hydrobiol Suppl 34:74–87

    Google Scholar 

  18. Mateeva E, Simon L (1963) Die physikalisch-chemischen und mikrobiologischen Ergebnisse der in der Donau im bulgarischen Sektor von km 845 bis 375 durchgeführten Untersuchungen 1959 bis 1962. In: 8. Konferenz der Internationalen Arbeitsgemeinschaft Donauforschung, Bukarest 1963. Referate. Hrsg: IAD, Wien, Österreich

    Google Scholar 

  19. Szemes G, Bozzay E (1964) The chemical and microbiological quality of the Danube water under ice cover in the extremely cold winter of 1962/63 as related to the supply of Budapest. Ann Sci Bp Biol 7:201 (cited by Mucha 1967: Die Mikrobiologie der Donau 3: 132–157)

    Google Scholar 

  20. Ristic O (1965) Mikrobiologische Untersuchungen der jugoslawischen Donaustrecke. Technologische Fakultät Novi Sad – Petrovaradin, unpubl. (cited by Mucha 1967: Die Mikrobiologie der Donau 3: 132–157)

    Google Scholar 

  21. Zamfir G, Balteanu EC, Nastase V, Finichiu M, Schreiner M (1968) Mikrobiologische und physikalisch-chemische Charakterisierung des Donauwassers im Abschnitt Braila-Tulcea. 10. Jubiläumstagung der Arbeitsgemeinschaft Donauforschung (IAD), Sofia. Limnologische Berichte. Hrsg: IAD, Wien, Österreich, pp 137–140

    Google Scholar 

  22. Mucha V (1967) Die Mikrobiologie der Donau 3: 132–157 [In: Liepolt R (Hrsg): Limnologie der Donau. Eine monographische Darstellung. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart 1967]

    Google Scholar 

  23. Kadlecova O, Odler J, Enterova K (1970) Die Salmonellen-Verunreinigung der Donau durch Abwässer in Bratislava. Arch Hydrobiol Suppl 36:255–262

    Google Scholar 

  24. Mucha V, Daubner I (1971) Über die hydromikrobiologischen Erforschung der Donau. Aquat Sci Res Across Boundaries 33:252–268

    Article  Google Scholar 

  25. Michailenko LE, Ftomov AS (1979) Vergleichende sanitäts-mikrobiologische Auswertung der Mündungsgebiete von Dnepr, Dnestr und Donau. 21. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung der SIL in Novi Sad, Sept 1981. Wissenschaftliche Kurzreferate. Hrsg: IAD, Wien, Österreich, pp 562–567

    Google Scholar 

  26. Kohl W (1973) Salmonellen im Schlamm von Donaustauräumen. Kurzreferate der 16. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung (IAD), Bratislava, CSSR. Hrsg: IAD, Wien, Österreich

    Google Scholar 

  27. Kisselinov C (1981) Mikrobiologische Untersuchung der bakteriellen Belastung der Donau im bulgarischen Abschnitt. Referate - III. Hydromikrobiologisches Symposium, Smolenice, CSSR, 3.-6. Juni 1980, Verlag der Slowakischen Akademie der Wissenschaften, Bratislava, pp 175–186

    Google Scholar 

  28. Miklosovicova L (1982) Der gegenwärtige Stand der Wassergüte der Donau im Bereich des Wasserkraftwerkes Gabcikovo-Nagymaros vom mikrobiologischen Standpunkt. 23. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung in Wien, Sept 1982. Wissenschaftliche Kurzreferate. Hrsg: IAD, Wien, Österreich, pp 56–58

    Google Scholar 

  29. Zamfir G, Raileanu L (1982) Hygienisch-sanitäre Eigenheiten des Donaustromes hinsichtlich seiner Verwendung als Trinkwasserquelle. 23. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung (IAD) der SIL in Wien, Sept. 1982. Wissenschaftliche Kurzreferate. Hrsg: IAD, Wien, Österreich, pp 72–74

    Google Scholar 

  30. Kavka GG (1985) Salmonellen in Stauräumen des österreichischen Donauabschnittes. Wissenschaftliche Kurzreferate – 25. Arbeitstagung der Internationalen ARGE Donauforschung der SIL in Bratislava, pp 159–163

    Google Scholar 

  31. Kavka GG (1987) Die bakteriologische Wasserbeschaffenheit der österreichischen Donau. Wasser und Abwasser 31:305–344

    Google Scholar 

  32. Nicolescu D (1982) Daten zum Bakterioplankton der Donau im rumänischen Abschnitt im Jahre 1981. 23. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung der SIL in Wien, Sept 1982. Wissenschaftliche Kurzreferate. Hrsg: IAD, Wien, Österreich, pp 53–55

    Google Scholar 

  33. Gajin S (1982) Die Bewertung der Wasserqualität der jugoslawischen Donaustrecke aufgrund einiger mikrobiologischer Parameter. 23. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung (IAD) der SIL in Wien, 13–17 Sept 1982. Wissenschaftliche Kurzreferate. Hrsg: Österreichisches Nationalkomitee der IAD, Wien, Österreich, pp 62–64

    Google Scholar 

  34. Matavulj M, Petrovic O, Gajin S, Gantar M, Bokorov M, Erbenzik M (1984) Korrelation zwischen Phosphatase-Aktivität und mikrobiologischen Kennziffern der Qualität des Donauwassers. 24. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung in Szentendre, Sept 1984. Wissenschaftliche Kurzreferate I. Ed. Dr. A Berczik, Göd, Ungarn, pp 57–60

    Google Scholar 

  35. Matavulj M, Bokorov M, Gajin S, Gantar M, Stoilkovic S, Flint KP (1990) Phosphatase activity of water as a monitoring parameter. Water Sci Technol 22:63–68

    Article  CAS  Google Scholar 

  36. Kasimir GD, Kavka GG (1988) Untersuchung der zählbaren und züchtbaren Bakterien in einem Laufstauökosystem (Donaustau Altenwörth). Wasser und Abwasser 32:57–88

    Google Scholar 

  37. Baschmakova IC (1985) Strukturelle und funktionelle Charakteristik des Bakterioplanktons im Kilia-Delta. 25. Arbeitstagung der Internationalen Arbeitsgemeinschaft Donauforschung (IAD), Bratislava, CSSR, 17–21 Sept 1985. Wissenschaftliche Kurzreferate. Hrsg: IAD, Wien, Österreich, pp 151–154

    Google Scholar 

  38. Albinger O (1990) Bakteriologische Wasser- und Sedimentuntersuchungen der Donau von Str.-km 16 bis Str.-km 1868 im März 1988. Ergebnisse der Internationalen Donauexpedition 1988. Hrsg: Internationale Arbeitsgemeinschaft Donauforschung (IAD) der Societas Internationalis Limnologiae (SIL), Wien, Österreich, Eigenverlag, pp 249–256

    Google Scholar 

  39. Trzilova B, Miklosovicova L (1990) Mikrobiologische Ergebnisse der Donauexpedition 1988 (Strom-km 20 bis Strom.-km 1868). Ergebnisse der Internationalen Donauexpedition 1988 Hrsg.: Internationale Arbeitsgemeinschaft Donauforschung (IAD) der Societas Internationalis Limnologiae (SIL), Wien, Österreich, Eigenverlag, pp 293–300

    Google Scholar 

  40. Stilinovic B (1990) Bakteriologische Eigenschaften des Donauwassers von Bratislava bis Vilkovo im März 1988. Ergebnisse der Internationalen Donauexpedition 1988. Hrsg.: Internationale Arbeitsgemeinschaft Donauforschung (IAD) der Societas Internationalis Limnologiae (SIL), Wien, Österreich, Eigenverlag, pp 281–292

    Google Scholar 

  41. Beij TW, Schmargun LM (1990) Hygienisch-bakteriologische Charakteristik des Donauwassers im März 1988. Ergebnisse der Internationalen Donauexpedition 1988. Hrsg: Internationale Arbeitsgemeinschaft Donauforschung (IAD) der Societas Internationalis Limnologiae (SIL), Wien, Österreich, Eigenverlag, pp 257–262

    Google Scholar 

  42. Kasimir GD (1990) Bacterial density, bacterial biomass and production in the river Danube along a longitudinal profile (in German). Ergebnisse der Internationalen Donauexpedition 1988. Internationale ARGE Donauforschung (IAD) der SIL, Eigenverlag, pp 263–273

    Google Scholar 

  43. Michajlenko LJ, Baschmakova IC, Jakuschin WM (1990) Die funktionelle Struktur des Bakterienplanktons der Donau. Ergebnisse der Internationalen Donauexpedition 1988. Hrsg: Internationale Arbeitsgemeinschaft Donauforschung (IAD) der Societas Internationalis Limnologiae, Wien, Österreich, Eigenverlag, pp 273–280

    Google Scholar 

  44. Kavka GG, Ludwig C, Ranner H, Humpesch UH, Kohl W (1990) Long-term quality alteration of the Danube near Vienna (1934–1902 km from the river mouth) (in German, English summary). Österreichische Wasserwirtschaft 42:26–33

    Google Scholar 

  45. Gajin S, Gantar M, Matavuly M, Petrovicy O (1990) The long term investigation of the River Danube water quality in the Yugoslav section according to microbial parameters. Water Sci Technol 22:39–44

    Article  Google Scholar 

  46. Daubner I, Trzilova B (1991) Mikrobiologische Langzeituntersuchungen (1954–1989) der Donau aus limnologischer und hygienischer Sicht. Wasser und Abwasser, Wien 35: 31–51

    Google Scholar 

  47. Kavka GG, Berger B, Hoch BM, Herndl G (1996) Assessment of microbiological water quality in the Austrian section of the River Danube. Arch Hydrobiol Suppl Large Rivers 113(10):79–86

    Google Scholar 

  48. Kavka GG (1997) Bacteriological water quality in the Austrian section of the River Danube in consideration of EEC-Directives (in German with English summary). In: Güteentwicklung der Donau - Rückblick und Perspektiven. Schriftenreihe des Bundesamtes für Wasserwirtschaft, vol 4. Wien, Österreich, pp 52–69

    Google Scholar 

  49. Kavka GG (2000) Mikrobiologischer Zustand des österreichischen Donauabschnittes. In: Kavka GG und Kreitner P (Hrsg): Wasserbeschaffenheit und Güte der österreichischen Donau unter besonderer Berücksichtigung der langzeitlichen Entwicklung. Schriftenreihe des Bundesamtes für Wasserwirtschaft, vol 10. Wien, Österreich, pp 224–259

    Google Scholar 

  50. Popp W, Baumann M, Moller de Vargas D (1993) Bewertungsschema zur bakteriologisch-hygienischen Beurteilung der Wasserqualitat von Fließgewässern anhand von Fäkalindikatorbakterien als Ergänzung zur biologischen Gewassergütebeurteilung. Münchner Beiträge zur Abwasser-, Fischerei- und Flussbiologie, vol 47, pp 63–86

    Google Scholar 

  51. Baschmakova IC (1990) Estimation of the readily oxidizable organic matter reserve and its effect on the intensity of organic matter destruction by bacteria in the Danube. Water Sci Technol 22:31–33

    Article  Google Scholar 

  52. Trzilova B, Miklosovicova L (1991) Das Vorkommen physiologischer Mikroben im Donauwasser. der 29.Tagung der Internationale Arbeitsgemeinschaft Donauforschung (IAD) in Kiew. Limnologische Berichte. Hrsg.: IAD, Wien, Österreich, pp 34–36

    Google Scholar 

  53. Berger B, Hoch BM, Kavka G, Herndl GJ (1995) The bacterial community of the Danube near Vienna: microbial-ecological parameters as compared with bacteriological water quality parameters and their influencing factors (in German). Wasser Abfallwirtsch 47:282–288

    Google Scholar 

  54. Hoch B, Berger B, Kavka G, Herndl GJ (1996) Influence of waste water treatment on the ecology of a large temperate river system – the Danube River. Hydrobiologia 321:205–218

    Article  CAS  Google Scholar 

  55. Berger B, Hoch BM, Kavka G, Herndl GJ (1996) Bacterial colonization of suspended solids in the River Danube. Aquat Microb Ecol 10:37–44

    Article  Google Scholar 

  56. Berger B, Hoch BM, Kavka G, Herndl GJ (1996) Bacterial metabolism in the Danube River: parameters controlling bacterial production. Freshw Biol 34:601–616

    Article  Google Scholar 

  57. Farnleitner AH, Kasimir DG (1996) Bacterial activities in newly deposited sediments of the River Danube in Lower Austria. Arch Hydrobiol Suppl Large Rivers 113:397–403

    Google Scholar 

  58. Krauss-Kalweit I (2000) Vom Rhein zur ungarischen Donau. Messfahrt der MS Burgund auf Main, Main-Donau-Kanal und Donau vom 11. Mai bis 20. Juni 1998. Bd. I und II (Untersuchungsergebnisse). Hrsg: Ministerium für Umwelt und Forst, Rheinland-Pfalz, Germany (in German with English summary), 62 pp

    Google Scholar 

  59. Nemes K, Matavulj M, Simeunović J, Bugarski R, Gajin S, Lozanov-Crvenković Z (2007) Development of bacterioplankton biotransformation processes in the Danube River. In: Proceedings of the 11th international eco-conference 2007, Novi Sad, 26–29 Sept 2007, pp 89–96

    Google Scholar 

  60. Peduzzi P, Luef B (2008) Viruses, bacteria and suspended particles in a backwater and main channel site of the Danube (Austria). Aquat Sci 70:186–194

    Article  Google Scholar 

  61. Nemes K, Matavuly M, Gajin S, Bugarski R, Simeunović J, Lozanov-Crvenković Z, Dalmacija B (2008) Phosphatase activity index (PAI): a reliable parameter for monitoring the point sources of pollutants and sustainable development. In: Proceedings - Balwois 2008 – Ohrid, Republic of Macedonia – 27–31 May 2008, 8 pp

    Google Scholar 

  62. Velimirov B, Milosevic N, Kavka GG, Farnleitner AH, Kirschner AKT (2011) Development of the bacterial compartment along the Danube River: a continuum despite local influences. Microb Ecol 61:955–967

    Article  Google Scholar 

  63. Farnleitner AH, Hocke L, Beiwl C, Kavka GG, Zechmeister T, Kirschner AKT, Mach LR (2001) Rapid enzymatic detection of Escherichia coli contamination in polluted river water. Lett Appl Microbiol 33:246–250

    Article  CAS  Google Scholar 

  64. Farnleitner AH, Hocke L, Beiwl C, Kavka GG, Mach RL (2002) Hydrolysis of 4- methylumbelliferyl-b-D-glucuronide in differing sample fractions of river waters and its implication for the detection of fecal pollution. Water Res 36:975–981

    Article  CAS  Google Scholar 

  65. Schade M, Kopf W, Reischer GH, Farnleitner AH (2010) Wastewater disinfection at River Ilz to improve bacteriological water quality: effects and constraints. In: 38th conference international association for Danube research (IAD), Dresden 2010. Abstract book. IAD Germany, German Federal Institute of Hydrology (BfG) & IAD General Secretary, Wilhering, p 116

    Google Scholar 

  66. Kolarević S, Knežević-Vukčević J, Paunović M, Tomović J, Gačić Z, Vuković-Gačić B (2011) The anthropogenic impact on water quality of the River Danube in Serbia: microbiological analysis and genotoxicity monitoring. Arch Biol Sci Belgrade 63:1209–1217

    Article  Google Scholar 

  67. Hosam EAF, Hamuda B, Patko I (2012) Ecological monitoring of Danube water quality in the Budapest region. Am J Environ Sci 8:202–211

    Article  Google Scholar 

  68. Ajeagah G, Cioroi M, Praisler M, Constantin O, Palela M, Bahrim G (2012) Bacteriological and environmental characterisation of the water quality in the Danube River Basin in the Galati area of Romania. Afr J Microbiol Res 6:292–301

    CAS  Google Scholar 

  69. Kavka GG, Poetsch E (2002) Microbiology. In: Literáthy P, Koller-Kreimel V, Liska I (eds) Joint Danube Survey, technical report, ICPDR Vienna (Austria), vol 261. pp 138–150. http://www.icpdr.org/main/activities-projects/joint-danube-survey-1

  70. Kirschner AKT, Kavka GG, Velimirov B, Reischer GH, Mach RL, Farnleitner AH (2008) Microbiological water quality and DNA based quantitative microbial source tracking. In: Liska I, Wagner F, Slobodnik J (eds.) Joint Danube Survey 2, final scientific report. ICPDR, Vienna, pp 86–95. http://www.icpdr.org/main/activities-projects/joint-danube-survey-2

  71. Kavka GG, Kasimir GD, Farnleitner AH (2006) Microbiological water quality of the River Danube (km 2581 - km 15): longitudinal variation of pollution as determined by standard parameters. In: Proceedings of the 36th international conference of IAD, Austrian Committee Danube Research, Vienna, pp 415–421

    Google Scholar 

  72. Farnleitner AH, Reischer G, Winter C, Hein T, Mach RL, Kavka GG (2006) Progress in aquatic microbiology: introducing molecular biological approaches on a whole River Danube scale from Germany to the Black Sea. Danube news, vol 50. International Association of Danube Research, Wilhering, pp 8–12

    Google Scholar 

  73. Winter C, Hein T, Kavka GG, Mach RL, Farnleitner AH (2007) Longitudinal changes in the bacterial community composition of the Danube River: a whole-river approach. Appl Environ Microbiol 73:421–431

    Article  CAS  Google Scholar 

  74. Reischer GH, Kavka GG, Kasper DC, Winter C, Mach RL, Farnleitner AH (2008) Applicability of DNA based quantitative microbial source tracking (QMST) on a large scale in the Danube River and its important tributaries. Fundam Appl Limnol Suppl 162:117–125

    Google Scholar 

  75. European Council (1976) Council Directive 76/160/EEC of 8 December 1975 concerning the quality of bathing water. Off J L031:1–7

    Google Scholar 

  76. Evanson M, Ambrose RF (2006) Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters. Water Res 40:475–486

    Article  CAS  Google Scholar 

  77. Wade TJ, Pai N, Eisenberg JNS, Colford JM (2003) Do US environmental protection agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environ Health Perspect 111:1102–1109

    Article  Google Scholar 

  78. International Standard Organisation (ISO 7899-1) (1998) Water quality – detection and enumeration of intestinal enterococci in surface and waste water - part 1: miniaturized method (most probable number) for surface and waste water. International Organization of Standardization, Geneva, 21 pp

    Google Scholar 

  79. International Standard Organisation (ISO 7899-2) (2000) Water quality – detection and enumeration of intestinal enterococci – part 2: membrane filtration method. International Organization of Standardization, Geneva, 7 pp

    Google Scholar 

  80. International Standard Organisation (ISO 9308-1) (2000) Water quality – detection and enumeration of Escherichia coli and coliform bacteria – part 1: membrane filtration method. International Organization of Standardization, Geneva, p 10

    Google Scholar 

  81. International Standard Organisation (ISO 19458) (2006) Water quality – sampling for microbiological analysis. International Organisation for Standardisation, Geneva, Switzerland, 27 pp

    Google Scholar 

  82. European Parliament & Council (2000) Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official J L327:1–72

    Google Scholar 

  83. Hagedorn C, Haarwood J, Blanch A (2011) Microbial source tracking: methods, applications and case studies. Springer, New York, 642 pp

    Google Scholar 

  84. Domingo JWS, Bambic DG, Edge TA, Wuertz S (2007) Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res 41:3539–3552

    Article  CAS  Google Scholar 

  85. Wuertz S, Wang D, Reischer G, Farnleitner AH (2011) Library independent bacterial methods. In: Hagedorn C, Haarwood J, Blanch A (eds) Microbial source tracking: methods, applications and case studies. Springer, New York, pp 61–112

    Chapter  Google Scholar 

  86. Reischer GH, Kasper DC, Steinborn R, Mach RL, Farnleitner AH (2006) Quantitative PCR method for sensitive detection of ruminant faecal pollution in freshwater and evaluation of this method in alpine karstic regions. Appl Environ Microbiol 72:5610–5614

    Article  CAS  Google Scholar 

  87. Reischer GH, Kasper DC, Steinborn R, Farnleitner AH, Mach RL (2007) A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment. Lett Appl Microbiol 44:351–356

    Article  CAS  Google Scholar 

  88. Kildare BJ, Leutenegger CM, McSwain SM, Bambic DG, Rajal VB, Wuertz S (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res 41:3701–3715

    Article  CAS  Google Scholar 

  89. Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72:4214–4224

    Article  CAS  Google Scholar 

  90. Vierheilig J, Farnleitner AH, Kollanur D, Blöschl G, Reischer GH (2012) High abundance of genetic Bacteroidetes markers for total fecal pollution in pristine alpine soils suggests lack in specificity for feces. J Microbiol Methods 88:433–435

    Article  CAS  Google Scholar 

  91. International Standard Organisation (ISO⁄CD 6461-2) (2002) Water quality – detection and enumeration of Clostridium perfringens – part 2: method by membrane filtration. International Organization of Standardization, Geneva

    Google Scholar 

  92. Kirschner A, Velimirov B (1997) Seasonal study of bacterial community succession in a temperate backwater system indicated by variation in morphotype numbers, biomass and secondary production. Microb Ecol 34:27–38

    Article  CAS  Google Scholar 

  93. Van der Wielen PWJ, Medema G (2010) Unsuitability of quantitative Bacteroidales 16S rRNA gene assays for discerning fecal contamination of drinking water. Appl Environ Microbiol 76:4876–4881

    Article  CAS  Google Scholar 

  94. World Health Organisation (2003) Guidelines for safe recreational water environments - volume 1: coastal and freshwaters. World Health Organisation, Geneva, 219 pp

    Google Scholar 

  95. World Health Organisation (2011) Guidelines for drinking-water quality, 4th edn. World Health Organisation, Geneva, 541 pp

    Google Scholar 

  96. Valent F, Little DA, Bertolli R, Nemer LE, Barbone F, Tamburlini G (2004) Burden of disease attributable to selected environmental factors and injury among children and adolescent in Europe. Lancet 363:2032–2039

    Article  Google Scholar 

  97. European Food Safety Authority (2009) Food-borne outbreaks in the European Union in 2007. EFSA J 271:128 pp. ISBN: 978-92-9199-133-4

    Google Scholar 

  98. Frost F, Muller T, Craun G, Mihály K, György B, Calderon B (2005) Serological response to Cryptosporidium antigens among women using riverbank-filtered water, conventionally filtered surface water and ground water in Hungary. J Water Health 3:77–82

    Article  Google Scholar 

  99. Putzer J, Takó MH, Márialigeti K, Törökné A, Karanis A (2007) First investigation into the prevalence of Cryptosporidium and Giardia spp. in Hungarian drinking water. J Water Health 5:573–584

    Article  Google Scholar 

  100. Blaschke AP, Steiner K-H, Schmalfuß R, Gutknecht D, Sengschmitt D (2003) Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. Int Rev Hydrobiol 88:397–413

    Article  Google Scholar 

  101. Literáthy P, Koller-Kreimel V, Liska I (eds) (2002) Joint Danube Survey, technical report, ICPDR Vienna (Austria), 261 pp. http://www.icpdr.org/main/activities-projects/joint-danube-survey-1

  102. Ishii S, Sadowsky M (2008) Escherichia coli in the environment: implications for water quality and human health. Microbes Environ 23:101–108

    Article  Google Scholar 

  103. Farnleitner AH, Ryzinska-Paier G, Reischer GH, Burtscher MM, Knetsch S, Kirschner AKT, Dirnböck T, Kuschnig G, Mach RL, Sommer R (2010) Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock, and wild life faecal pollution in alpine mountainous water resources. J Appl Microbiol 109:1599–1608

    CAS  Google Scholar 

  104. Farnleitner AH, Stadler H, Reischer GH, Sommer R, Kirschner AKT, Burtscher MM, Ryzinska G, Kuschnig G, Mach RL, Zerobin W (2008) Methods and strategies for alpine karstic water resource management: opening pollution microbiology’s “black box”. World Water Conference and Exhibition, 8.-12.09.2008 Vienna, Int. Water Association (IWA)

    Google Scholar 

  105. Farnleitner AH, Reischer GH, Savio DF, Frick C, Schuster N, Schilling K, Mach RL, Derx J, Kirschner A, Blaschke AP, Sommer R (2014) Diagnostik mikrobiologischer Fðkalkontaminationen in Wasser und Gewðssern: Status Quo und gegenwðrtige Entwicklungen. Wiener Mitteilungen 230:157–184, 978-3-85234-124-8

    Google Scholar 

  106. Farnleitner AH, Reischer GH, Stadler H, Kollanur D, Sommer R, Zerobin W, Barrella KM, Truesdale JA, Casarez EA, DiGiovanni GD (2011) Agricultural and rural watersheds. In: Hagedorn C et al (eds) Microbial source tracking: methods, applications and case studies. Springer, New York

    Google Scholar 

  107. Stalder G, Sommer R, Walzer C, Mach RL, Beiglb­ck C, Blaschke AP, Farnleitner AH (2011) Gefðhrdungs- und risikobasierende Konzepte zur Bewertung der mikrobiologischen Wasserqualitðt - Teil 1. Vet Med Austria 98:9–24

    Google Scholar 

  108. Derx J, Blaschke AP, Blöschl G (2010) Three-dimensional flow patterns at the river-interface – a case study at the Danube. Adv Water Resour 33:1375–1387

    Article  Google Scholar 

  109. Farnleitner AH, Mach RL, Reischer G, Kavka GG (2007) Mikrobiologisch – hygienische Risiken trotz Klðranlagen am Stand der Technik? Wiener Mitteilungen 201:209–242 (in German)

    Google Scholar 

  110. Farnleitner AH, Winter C, Hein T, Mach RL, Kavka G (2006) Longitudinal changes in the bacterial community of the Danube by 16S rDNA profiling: a whole river approach. In: Proceedings of the 36th international conference of the IAD, Austrian Committee Danube Research/International Association of Danube Research, Vienna, pp 326–331

    Google Scholar 

  111. Kohl W (1969) Vorkommen und Nachweis von Salmonellen in Oberflächengewässern Österreichs. Wien Tierarztl Monatsschr 56:379–381

    CAS  Google Scholar 

  112. Stadler H, Skritek P, Sommer R, Mach RL, Zerobin W, Farnleitner AH (2008) Microbiological monitoring and automated event sampling at karst springs using LEO-satellites. Water Sci Technol 58:899–909

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by the ICPDR (Joint Danube Survey 2001, 2007), the Austrian Science Fund (FWF) projects # P22309-B20 granted to A.H.F. and # W1219-N22 (Vienna Doctoral Programme on Water Resource Systems) as well as by the Vienna Water Works (project “Groundwater Resource Systems Vienna”), as part of the “(New) Danube – Untere Lobau Network Project” (Gewässervernetzung (Neue) Donau–Untere Lobau (National Park Donau-Auen)), funded by the Government of Austria (Federal Ministry of Agriculture, Forestry, Environment and Water Management), the Government of Vienna, and the European Agricultural Fund for Rural Development (project LE 07-13).

This is a joint publication of the Interuniversity Cooperation Center Water and Health (www.waterandhealth.at).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Kavka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirschner, A.K.T. et al. (2014). Microbiological Water Quality of the Danube River: Status Quo and Future Perspectives. In: Liska, I. (eds) The Danube River Basin. The Handbook of Environmental Chemistry, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2014_307

Download citation

Publish with us

Policies and ethics