Skip to main content

UV LED Sources for Heterogeneous Photocatalysis

  • Chapter
  • First Online:
Environmental Photochemistry Part III

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 35))

Abstract

This review article presents an overview of the application of ultraviolet light-emitting diode (UV LED) sources in heterogeneous photocatalysis within the context of artificial UV sources. The feasibility of UV LEDs as a source of UV irradiation in heterogeneous photocatalysis was first demonstrated almost a decade ago; however, for the most part, photocatalytic experimental set-ups utilise artificial light sources in the form of conventional UV lamps to initiate the desired photocatalytic transformations. A look at all sources of UV irradiation used in heterogeneous photocatalysis is taken with a focus on the growing importance of solid-state lighting devices such as UV LEDs. UV LEDs have higher external quantum efficiency and a lifetime of over 100,000 h; they are small in size and produce directional UV light which can be of the desired wavelength. In recent times, these UV LED sources have become widely applied in heterogeneous photocatalysis studies in the research literature and are fast becoming a viable alternative to conventional UV lamps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Nature 238:37

    CAS  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    CAS  Google Scholar 

  3. Mills A, Le Hunte S (1997) J Photochem Photobiol A 108:1

    CAS  Google Scholar 

  4. Linsebigler LA, Lu G, Yates TJ (1995) Chem Rev 95:735–758

    CAS  Google Scholar 

  5. Fox AM, Dulay TM (1993) Chem Rev 93:341–357

    CAS  Google Scholar 

  6. Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys 14:8269–8285

    Google Scholar 

  7. Fujishima A, Zhang X (2006) C R Chim 9:750

    CAS  Google Scholar 

  8. Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503

    CAS  Google Scholar 

  9. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253

    CAS  Google Scholar 

  10. Ni M, Leung MK, Leung DY, Sumathy K (2007) Renew Sustain Energy Rev 11:401

    CAS  Google Scholar 

  11. Mills A, Davies HR, Worsley D (1993) Chem Soc Rev 22:417–425

    CAS  Google Scholar 

  12. Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671–698

    CAS  Google Scholar 

  13. Friedmann D, Mendive C, Bahnemann D (2010) Appl Catal B 99:398

    CAS  Google Scholar 

  14. Bahnemann D, Bockelmann D, Goslich R (1991) Sol Energy Mater Sol Cells 24:564

    CAS  Google Scholar 

  15. Zhao J, Yang X (2003) Build Environ 38:645

    Google Scholar 

  16. Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Atmos Environ 43:2229

    CAS  Google Scholar 

  17. Khan FI, Ghoshal AK (2000) J Loss Prev Process Ind 13:527

    Google Scholar 

  18. McCullagh C, Skillen N, Adams M, Robertson PKJ (2011) J Chem Technol Biotechnol 86:1002

    CAS  Google Scholar 

  19. Mozia S (2010) Sep Purif Technol 73:71

    CAS  Google Scholar 

  20. Bouchy M, Zahraa O (2003) Int J Photoenergy 5:191

    CAS  Google Scholar 

  21. Birnie M, Riffat S, Gillott M (2006) Int J Low Carbon Technol 1:47

    Google Scholar 

  22. Malato S, Fernández-Ibáñez P, Maldonado M, Blanco J, Gernjak W (2009) Catal Today 147:1

    CAS  Google Scholar 

  23. Chen X, Mao SS (2007) Chem Rev 107:2891

    CAS  Google Scholar 

  24. Li Puma G, Bono A, Krishnaiah D, Collin JG (2008) J Hazard Mater 157:209

    CAS  Google Scholar 

  25. Shan AY, Ghazi TIM, Rashid SA (2010) Appl Catal A 389:1

    CAS  Google Scholar 

  26. Goldstein S, Behar D, Rabani J (2009) J Phys Chem C 113:12489

    CAS  Google Scholar 

  27. Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) J Phys Chem B 106:2922–2927

    CAS  Google Scholar 

  28. Wang H, He J, Gerrit Boschloo G, Lindstrom H, Hagfeldt A, Lindquist S (2001) J Phys Chem B 105:2529–2533

    CAS  Google Scholar 

  29. Sawyer DT, Valentine JS (1981) Acc Chem Res 14:393

    CAS  Google Scholar 

  30. Wood PM (1988) Biochem J 253:287

    CAS  Google Scholar 

  31. Zhang Z, Wang C, Zakaria R, Ying JY (1998) J Phys Chem B 102:10871

    CAS  Google Scholar 

  32. Diebold U (2003) Surf Sci Rep 48:53

    CAS  Google Scholar 

  33. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) J Photochem Photobiol A 216:179

    CAS  Google Scholar 

  34. Pelizzetti E (1995) Sol Energy Mater Sol Cells 38:453

    CAS  Google Scholar 

  35. Mills A, Crow M (2008) Int J Photoenergy 2008:Article ID 470670

    Google Scholar 

  36. Nakajima A, Koizumi S, Watanabe T, Hashimoto K (2000) Langmuir 16:7048

    CAS  Google Scholar 

  37. Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Chem Mater 14:2812

    CAS  Google Scholar 

  38. Langlet M, Permpoon S, Riassetto D, Berthomé G, Pernot E, Joud JC (2006) J Photochem Photobiol A 181:203

    CAS  Google Scholar 

  39. Shiragami T, Pac C, Yanagida S (1990) J Phys Chem 94:504

    CAS  Google Scholar 

  40. Shiragami T, Ankyu H, Fukami S, Pac C, Yanaglda S, Mori H, Fujita H (1992) J Chem Soc Faraday Trans 88:1055

    CAS  Google Scholar 

  41. Chatterjee D, Dasgupta S (2005) J Photochem Photobiol C 6:186

    CAS  Google Scholar 

  42. Bockelmann D, Weichgrebe D, Goslich R, Bahnemann D (1995) Sol Energy Mater Sol Cells 38:441

    CAS  Google Scholar 

  43. Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R (2000) Catal Today 58:199

    CAS  Google Scholar 

  44. Sichel C, De Cara M, Tello J, Blanco J, Fernández-Ibáñez P (2007) Appl Catal B 74:152

    CAS  Google Scholar 

  45. Fernández P, Blanco J, Sichel C, Malato S (2005) Catal Today 101:345

    Google Scholar 

  46. Guo M, Hu H, Bolton JR, El-Din MG (2009) Water Res 43:815

    CAS  Google Scholar 

  47. Schalk S, Adam V, Arnold E, Brieden K, Voronov A, Witzke H (2006) IUVA News 8:32

    Google Scholar 

  48. Bhatkhande DS, Kamble SP, Sawant SB, Pangarkar VG (2004) Chem Eng J 102:283

    CAS  Google Scholar 

  49. Kuo W, Ho P (2001) Chemosphere 45:77

    CAS  Google Scholar 

  50. Zhao L, Han M, Lian J (2008) Thin Solid Films 516:3394

    CAS  Google Scholar 

  51. Suda Y, Kawasaki H, Ueda T, Ohshima T (2004) Thin Solid Films 453:162

    Google Scholar 

  52. Zhao L, Jiang Q, Lian J (2008) Appl Surf Sci 254:4620

    CAS  Google Scholar 

  53. Stewart G, Fox AM (1995) Res Chem Intermed 21:933–938(6)

    CAS  Google Scholar 

  54. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487

    CAS  Google Scholar 

  55. Tanielian C, Duffy K, Jones A (1997) J Phys Chem B 101:4276

    CAS  Google Scholar 

  56. Tachikawa T, Tojo S, Fujitsuka M, Majima T (2006) Chem A Eur J 12:3124

    CAS  Google Scholar 

  57. Navío JA, Marchena FJ, Roncel M, De la Rosa MA (1991) J Photochem Photobiol A 55:319

    Google Scholar 

  58. Gondal M, Sayeed M, Seddigi Z (2008) J Hazard Mater 155:83

    CAS  Google Scholar 

  59. Yahaya AH, Gondal MA, Hameed A (2004) Chem Phys Lett 400:206

    CAS  Google Scholar 

  60. Bergh AA, Dean PJ (1976) Light emitting diodes. Clarendon, Oxford, 598p

    Google Scholar 

  61. Haitz R, Tsao JY (2011) Phys Status Solidi A 208:17

    CAS  Google Scholar 

  62. Bettles T, Schujman S, Smart JA, Liu W, Schowalter L (2007) IUVA News 9:11

    Google Scholar 

  63. Krames MR, Shchekin OB, Mueller-Mach R, Mueller GO, Zhou L, Harbers G, Craford MG (2007) J Disp Technol 3:160

    CAS  Google Scholar 

  64. Pimputkar S, Speck JS, DenBaars SP, Nakamura S (2009) Nat Photonics 3:180

    CAS  Google Scholar 

  65. O’Toole M, Diamond D (2008) Sensors 8:2453

    Google Scholar 

  66. de Lacy Costello BPJ, Ewen RJ, Ratcliffe NM, Richards M (2008) Sens Actuators B Chem 134:945

    Google Scholar 

  67. Vilhunen S, Särkkä H, Sillanpää M (2009) Environ Sci Pollut Res Int 16:439

    CAS  Google Scholar 

  68. Würtele MA, Kolbe T, Lipsz M, Külberg A, Weyers M, Kneissl M, Jekel M (2011) Water Res 45:1481

    Google Scholar 

  69. Hao Z, Zhang J, Zhang X, Ren X, Luo Y, Lu S, Wang X (2008) J Phys D 41:182001

    Google Scholar 

  70. Wawryk J, Odell M (2005) J Clin Forensic Med 12:296

    Google Scholar 

  71. Ollett SH, Lampe Jr RW (2005) US Patent 6,880,954

    Google Scholar 

  72. Chen DH, Ye X, Li K (2005) Chem Eng Technol 28:95

    CAS  Google Scholar 

  73. Li D, Haneda H, Ohashi N, Hishita S, Yoshikawa Y (2004) Catal Today 93–95:895

    Google Scholar 

  74. Gorges R, Meyer S, Kreisel G (2004) J Photochem Photobiol A 167:95

    CAS  Google Scholar 

  75. Eurpean Committee for Standardization (2014) Technical Committee CEN/TC 386 “Photocatalysis”, CEN/TS 16599

    Google Scholar 

  76. Jo W, Tayade RJ (2014) Ind Eng Chem Res 53:2073

    Google Scholar 

  77. Shie J, Lee C, Chiou C, Chang C, Chang C, Chang C (2008) J Hazard Mater 155:164

    CAS  Google Scholar 

  78. Levine LH, Richards JT, Coutts JL, Soler R, Maxik F, Wheeler RM (2011) J Air Waste Manage Assoc 61:932

    CAS  Google Scholar 

  79. Tayade RJ, Natarajan TS, Bajaj HC (2009) Ind Eng Chem Res 48:10262

    CAS  Google Scholar 

  80. Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Chem Eng J 169:126

    CAS  Google Scholar 

  81. Jo W, Eun S, Shin S (2011) Photochem Photobiol 87:1016

    CAS  Google Scholar 

  82. Wang X, Lim T (2010) Appl Catal B 100:355

    CAS  Google Scholar 

  83. Wang P, Fane AG, Lim T (2013) Chem Eng J 215–216:240

    Google Scholar 

  84. Natarajan TS, Natarajan K, Bajaj CH, Tayade JR (2011) Ind Eng Chem Res 50:7753

    CAS  Google Scholar 

  85. Repo E, Rengaraj S, Pulkka S, Castangnoli E, Suihkonen S, Sopanen M, Sillanpää M (2013) Sep Purif Technol 120:206

    CAS  Google Scholar 

  86. Daniel D, Gutz IGR (2007) Electrochem Commun 9:522

    CAS  Google Scholar 

  87. Matsushita Y, Ohba N, Kumada S, Sakeda K, Suzuki T, Ichimura T (2008) Chem Eng J 135(Supplement 1):S303

    CAS  Google Scholar 

  88. Chen H, Ku Y, Irawan A (2007) Chemosphere 69:184

    CAS  Google Scholar 

  89. Tokode O, Prabhu R, Lawton LA, Robertson PKJ (2014) Chem Eng J 246:337

    CAS  Google Scholar 

  90. Tokode OI, Prabhu R, Lawton LA, Robertson PKJ (2012) J Catal 290:138

    CAS  Google Scholar 

  91. Wang Z, Liu J, Dai Y, Dong W, Zhang S, Chen J (2012) J Hazard Mater 215–216:25

    Google Scholar 

  92. Jamali A, Vanraes R, Hanselaer P, Van Gerven T (2013) Chem Eng Process Process Intensif 71:43

    CAS  Google Scholar 

  93. Xiong P, Hu J (2013) Water Res 47:4547

    Google Scholar 

  94. McCullagh C, Robertson JM, Bahnemann DW, Robertson PK (2007) Res Chem Intermed 33:359

    CAS  Google Scholar 

  95. Ray AK (1998) Catal Today 44:357

    CAS  Google Scholar 

  96. Peill NJ, Hoffmann MR (1995) Environ Sci Technol 29:2974

    CAS  Google Scholar 

  97. Hou W, Ku Y (2013) J Mol Catal A Chem 374–375:7

    Google Scholar 

  98. Natarajan K, Natarajan TS, Bajaj HC, Tayade RJ (2011) Chem Eng J 178:40

    CAS  Google Scholar 

  99. Turchi CS, Ollis DF (1988) J Phys Chem 92:6852

    CAS  Google Scholar 

  100. Ray AK, Beenackers AA (1998) AIChE J 44:477

    CAS  Google Scholar 

  101. Bergh A, Craford G, Duggal A, Haitz R (2001) Phys Today 54:42

    CAS  Google Scholar 

  102. Schubert EF, Kim JK (2005) Science 308:1274

    CAS  Google Scholar 

  103. Tsao JY (2004) IEEE Circuits Devices Mag 20:28

    Google Scholar 

  104. Topudurtir K, Tay S, Monschein E (1998) Advanced Photochemical Oxidation Processes Handbook ISBN-13: 978-1249248996

    Google Scholar 

  105. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Catal Today 53:51

    CAS  Google Scholar 

  106. Goldstein S, Aschengrau D, Diamant Y, Rabani J (2007) Environ Sci Technol 41:7486

    CAS  Google Scholar 

  107. Tokode O, Prabhu R, Lawton LA, Robertson PKJ (2014) Appl Catal B 156–157:398

    Google Scholar 

  108. Muñoz I, Rieradevall J, Torrades F, Peral J, Domènech X (2006) Chemosphere 62:9

    Google Scholar 

  109. Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Pure Appl Chem 73:627

    CAS  Google Scholar 

  110. Muruganandham M, Selvam K, Swaminathan M (2007) J Hazard Mater 144:316

    CAS  Google Scholar 

  111. Chen H, Ku Y, Wu C (2007) J Chem Technol Biotechnol 82:626

    CAS  Google Scholar 

  112. Daneshvar N, Aber S, Seyed Dorraji MS, Khataee AR, Rasoulifard MH (2007) Sep Purif Technol 58:91

    CAS  Google Scholar 

  113. Khataee AR, Pons MN, Zahraa O (2009) J Hazard Mater 168:451

    CAS  Google Scholar 

  114. Romero RL, Alfano OM, Cassano AE (1997) Ind Eng Chem Res 36:3094

    CAS  Google Scholar 

  115. Pasquali M, Santarelli F, Porter JF, Yue P (1996) AIChE J 42:532

    CAS  Google Scholar 

  116. Moreno I, Sun C (1808) Opt Express 16(2008)

    Google Scholar 

  117. Cassano EA, Martin AC, Brandi JR, Alfano MO (1995) Ind Eng Chem Res 34:2155–2201

    CAS  Google Scholar 

  118. Mukish P (2013) Market & technology reports. Yole Développement

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatosin Tokode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tokode, O., Prabhu, R., Lawton, L.A., Robertson, P.K.J. (2014). UV LED Sources for Heterogeneous Photocatalysis. In: Bahnemann, D., Robertson, P. (eds) Environmental Photochemistry Part III. The Handbook of Environmental Chemistry, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2014_306

Download citation

Publish with us

Policies and ethics