Advertisement

Personal Care Products in the Aquatic Environment in China

  • Qian Sun
  • Min Lv
  • Mingyue Li
  • Chang-Ping YuEmail author
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 36)

Abstract

Personal care products (PCPs) are a group of emerging contaminants which showed potential adverse effect on the environment and human health. In China, the production and consumption of PCPs continued a rapid growth because of the rapid economic growth and prosperity, which might lead to large ranges and quantities of PCPs releasing into the environment. Great concerns have been raised on the PCPs in the aquatic environment in China. So far, existing field studies have provided basic information on the occurrence and distribution of PCPs in the surface water, sewage water, sludge, and sediment. This chapter summarizes four major classes of PCPs in the aquatic environment in mainland China, including the antimicrobial agents, synthetic musks, UV filters, and preservatives. Generally, the PCP levels in China were comparable to the global levels. Seasonal and spatial variation of PCPs in the aquatic environment was observed. There are clear regional biases in the knowledge of PCPs in China. In the end, the limitations of the investigation are discussed, and the implications for future studies are proposed.

Keywords

China PCPs Sediment Sewage sludge Surface water Wastewater 

References

  1. 1.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211. doi: 10.1021/Es011055j CrossRefGoogle Scholar
  2. 2.
    Sun Q, Lv M, Hu A, Yang X, Yu C-P (2014) Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. J Hazard Mater. doi: 10.1016/j.jhazmat.2013.11.056 Google Scholar
  3. 3.
    Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82(11):1518–1532CrossRefGoogle Scholar
  4. 4.
    Hodges JEN, Holmes CM, Vamshi R, Mao D, Price OR (2012) Estimating chemical emissions from home and personal care products in China. Environ Pollut 165:199–207CrossRefGoogle Scholar
  5. 5.
    Euromonitor (2011) http://www.euromonitor.com
  6. 6.
    Gouin T, van Egmond R, Price OR, Hodges JEN (2012) Prioritising chemicals used in personal care products in China for environmental risk assessment: application of the RAIDAR model. Environ Pollut 165:208–214CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ Sci Technol 39(6):1420–1426. doi: 10.1021/es049071e CrossRefGoogle Scholar
  9. 9.
    Zhao J-L, Zhang Q-Q, Chen F, Wang L, Ying G-G, Liu Y-S, Yang B, Zhou L-J, Liu S, Su H-C, Zhang R-Q (2013) Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge. Water Res 47(1):395–405. doi: 10.1016/j.watres.2012.10.022 CrossRefGoogle Scholar
  10. 10.
    Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36(23):4998–5004. doi: 10.1021/es025750i CrossRefGoogle Scholar
  11. 11.
    Zhao JL, Ying GG, Liu YS, Chen F, Yang JF, Wang L (2010) Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. J Hazard Mater 179(1–3):215–222. doi: 10.1016/j.jhazmat.2010.02.082 CrossRefGoogle Scholar
  12. 12.
    Foran CM, Bennett ER, Benson WH (2000) Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar Environ Res 50(1–5):153–156. doi: 10.1016/S0141-1136(00)00080-5 CrossRefGoogle Scholar
  13. 13.
    Chen J, Ahn KC, Gee NA, Ahmed MI, Duleba AJ, Zhao L, Gee SJ, Hammock BD, Lasley BL (2008) Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 149(3):1173–1179. doi: 10.1210/en.2007-1057 CrossRefGoogle Scholar
  14. 14.
    Ying G-G, Yu X-Y, Kookana RS (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut 150(3):300–305. doi: 10.1016/j.envpol.2007.02.013 CrossRefGoogle Scholar
  15. 15.
    Heidler J, Sapkota A, Halden RU (2006) Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environ Sci Technol 40(11):3634–3639. doi: 10.1021/es052245n CrossRefGoogle Scholar
  16. 16.
    Chen Z-F, Ying G-G, Lai H-J, Chen F, Su H-C, Liu Y-S, Peng F-Q, Zhao J-L (2012) Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 404(10):3175–3188. doi: 10.1007/s00216-012-6444-2 CrossRefGoogle Scholar
  17. 17.
    Yu YY, Huang QX, Wang ZF, Zhang K, Tang CM, Cui JL, Feng JL, Peng XZ (2011) Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. J Environ Monitor 13(4):871–878. doi: 10.1039/C0em00602e CrossRefGoogle Scholar
  18. 18.
    Zhu S, Chen H (2014) The fate and risk of selected pharmaceutical and personal care products in wastewater treatment plants and a pilot-scale multistage constructed wetland system. Environ Sci Pollut Res 21(2):1466–1479. doi: 10.1007/s11356-013-2025-y CrossRefGoogle Scholar
  19. 19.
    Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z (2008) Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ 397(1–3):158–166. doi: 10.1016/j.scitotenv.2008.02.059 CrossRefGoogle Scholar
  20. 20.
    Wang L, Ying GG, Zhao JL, Liu S, Yang B, Zhou LJ, Tao R, Su HC (2011) Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environ Pollut 159(1):148–156. doi: 10.1016/j.envpol.2010.09.017 CrossRefGoogle Scholar
  21. 21.
    Wang L, Ying GG, Chen F, Zhang LJ, Zhao JL, Lai HJ, Chen ZF, Tao R (2012) Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools. Environ Pollut 165:241–249. doi: 10.1016/j.envpol.2011.10.005 CrossRefGoogle Scholar
  22. 22.
    Zhao J-L, Ying G-G, Wang L, Yang J-F, Yang X-B, Yang L-H, Li X (2009) Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography–negative chemical ionization–mass spectrometry. Sci Total Environ 407(2):962–974. doi: 10.1016/j.scitotenv.2008.09.048 CrossRefGoogle Scholar
  23. 23.
    Lv M, Sun Q, Hu A, Hou L, Li J, Cai X, Yu C-P Pharmaceuticals and personal care products in a mesoscale subtropical watershed and their application as sewage Marker. J Hazard mater. (accepted)Google Scholar
  24. 24.
    Halden RU, Paull DH (2004) Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry. Environ Sci Technol 38(18):4849–4855. doi: 10.1021/Es049524f CrossRefGoogle Scholar
  25. 25.
    Pedrouzo M, Borrull F, Marcé RM, Pocurull E (2009) Ultra-high-performance liquid chromatography–tandem mass spectrometry for determining the presence of eleven personal care products in surface and wastewaters. J Chromatogr A 1216(42):6994–7000. doi: 10.1016/j.chroma.2009.08.039 CrossRefGoogle Scholar
  26. 26.
    Bester K (2005) Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Con Tox 49(1):9–17. doi: 10.1007/s00244-004-0155-4 CrossRefGoogle Scholar
  27. 27.
    Wilson B, Chen RF, Cantwell M, Gontz A, Zhu J, Olsen CR (2009) The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary. Mar Pollut Bull 59(4–7):207–212. doi: 10.1016/j.marpolbul.2009.03.026 CrossRefGoogle Scholar
  28. 28.
    Neng NR, Nogueira JMF (2012) Development of a bar adsorptive micro-extraction-large-volume injection-gas chromatography–mass spectrometric method for pharmaceuticals and personal care products in environmental water matrices. Anal Bioanal Chem 402(3):1355–1364. doi: 10.1007/s00216-011-5515-0 CrossRefGoogle Scholar
  29. 29.
    Chen DH, Zeng XY, Sheng YQ, Bi XH, Gui HY, Sheng GY, Fu JM (2007) The concentrations and distribution of polycyclic musks in a typical cosmetic plant. Chemosphere 66(2):252–258. doi: 10.1016/j.chemosphere.2006.05.024 CrossRefGoogle Scholar
  30. 30.
    Zhang XL, Yao Y, Zeng XY, Qian GR, Guo YW, Wu MH, Sheng GY, Fu JM (2008) Synthetic musks in the aquatic environment and personal care products in Shanghai, China. Chemosphere 72(10):1553–1558. doi: 10.1016/j.chemosphere.2008.04.039 CrossRefGoogle Scholar
  31. 31.
    Zeng XY, Sheng GY, Gui HY, Chen DH, Shao WL, Fu JM (2007) Preliminary study on the occurrence and distribution of polycyclic musks in a wastewater treatment plant in Guandong, China. Chemosphere 69(8):1305–1311. doi: 10.1016/j.chemosphere.2007.05.029 CrossRefGoogle Scholar
  32. 32.
    Hu ZJ, Shi YL, Zhang SX, Niu HY, Cai YQ (2011) Assessment of synthetic musk fragrances in seven wastewater treatment plants of Beijing, China. B Environ Contam Tox 86(3):302–306. doi: 10.1007/s00128-011-0215-1 CrossRefGoogle Scholar
  33. 33.
    Zhou HD, Huang X, Gao MJ, Wang XL, Wen XH (2009) Distribution and elimination of polycyclic musks in three sewage treatment plants of Beijing, China. J Environ Sci (China) 21(5):561–567. doi: 10.1016/S1001-0742(08)62308-6 CrossRefGoogle Scholar
  34. 34.
    Lv Y, Yuan T, Hu JY, Wang WH (2010) Seasonal occurrence and behavior of synthetic musks (SMs) during wastewater treatment process in Shanghai, China. Sci Total Environ 408(19):4170–4176. doi: 10.1016/j.scitotenv.2010.05.003 CrossRefGoogle Scholar
  35. 35.
    Ren YX, Wei K, Liu H, Sui GQ, Wang JP, Sun YJ, Zheng XH (2013) Occurrence and removal of selected polycyclic musks in two sewage treatment plants in Xi’an, China. Front Env Sci Eng 7(2):166–172. doi: 10.1007/s11783-012-0471-2 CrossRefGoogle Scholar
  36. 36.
    He YJ, Chen W, Zheng XY, Wang XN, Huang X (2013) Fate and removal of typical pharmaceuticals and personal care products by three different treatment processes. Sci Total Environ 447:248–254. doi: 10.1016/j.scitotenv.2013.01.009 CrossRefGoogle Scholar
  37. 37.
    Feng L (2011) Study on distribution of polycyclic musks in water of Songhua River. Harbin Institute of Technology, Master degree thesisGoogle Scholar
  38. 38.
    Bester K (2004) Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant. Chemosphere 57(8):863–870. doi: 10.1016/j.chemosphere.2004.08.032 CrossRefGoogle Scholar
  39. 39.
    Yang JJ, Metcalfe CD (2006) Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids. Sci Total Environ 363(1–3):149–165. doi: 10.1016/j.scitotenv.2005.06.022 CrossRefGoogle Scholar
  40. 40.
    Berset JD, Kupper T, Etter R, Tarradellas J (2004) Considerations about the enantioselective transformation of polycyclic musks in wastewater, treated wastewater and sewage sludge and analysis of their fate in a sequencing batch reactor plant. Chemosphere 57(8):987–996. doi: 10.1016/j.chemosphere.2004.07.020 CrossRefGoogle Scholar
  41. 41.
    Reiner JL, Berset JD, Kannan K (2007) Mass flow of polycyclic musks in two wastewater treatment plants. Arch Environ Conam Tox 52(4):451–457. doi: 10.1007/s00244-006-0203-3 CrossRefGoogle Scholar
  42. 42.
    Kupper T, Berset JD, Etter-Holzer R, Furrer R, Tarradellas J (2004) Concentration and specific loads of polycyclic musks in sewage sludge originating from a monitoring network in Switzerland. Chemosphere 54(8):1111–1120. doi: 10.1016/j.chemosphere.2003.09.023 CrossRefGoogle Scholar
  43. 43.
    Hu ZJ, Shi YL, Cai YQ (2011) Concentrations, distribution, and bioaccumulation of synthetic musks in the Haihe River of China. Chemosphere 84(11):1630–1635. doi: 10.1016/j.chemosphere.2011.05.013 CrossRefGoogle Scholar
  44. 44.
    Reiner JL, Kannan K (2011) Polycyclic musks in water, sediment, and fishes from the Upper Hudson River, New York, USA. Water Air Soil Pollut 214(1–4):335–342. doi: 10.1007/s11270-010-0427-8 CrossRefGoogle Scholar
  45. 45.
    Lee IS, Lee SH, Oh JE (2010) Occurrence and fate of synthetic musk compounds in water environment. Water Res 44(1):214–222. doi: 10.1016/j.watres.2009.08.049 CrossRefGoogle Scholar
  46. 46.
    Bester K (2005) Polycyclic musks in the Ruhr catchment area - transport, discharges of waste water, and transformations of HHCB, AHTN and HHCB-lactone. J Environ Monitor 7(1):43–51. doi: 10.1039/B409213a CrossRefGoogle Scholar
  47. 47.
    Buerge IJ, Buser HR, Muller MD, Poiger T (2003) Behavior of the polycyclic musks HHCB and AHTN in lakes, two potential anthropogenic markers for domestic wastewater in surface waters. Environ Sci Technol 37(24):5636–5644. doi: 10.1021/Es0300721 CrossRefGoogle Scholar
  48. 48.
    Sang WJ, Zhang YL, Zhou XF, Ma LM, Sun XJ (2012) Occurrence and distribution of synthetic musks in surface sediments of Liangtan River, West China. Environ Eng Sci 29(1):19–25. doi: 10.1089/ees.2010.0241 CrossRefGoogle Scholar
  49. 49.
    Zeng XY, Sheng GY, Zhang XL, Mai BX, An TC, Fu JM (2008) The occurrence and distribution of polycyclic musks in sediments from river water. Environ Chem 27(3):368–370 (in Chinese)Google Scholar
  50. 50.
    Li WH, Ma YM, Guo CS, Hu W, Liu KM, Wang YQ, Zhu T (2007) Occurrence and behavior of four of the most used sunscreen UV filters in a wastewater reclamation plant. Water Res 41(15):3506–3512. doi: 10.1016/j.watres.2007.05.039 CrossRefGoogle Scholar
  51. 51.
    Balmer ME, Buser HR, Muller MD, Poiger T (2005) Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environ Sci Technol 39(4):953–962. doi: 10.1021/Es040055r CrossRefGoogle Scholar
  52. 52.
    Liu YS, Ying GG, Shareef A, Kookana RS (2012) Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant. Environ Pollut 165:225–232. doi: 10.1016/j.envpol.2011.10.009 CrossRefGoogle Scholar
  53. 53.
    Zhang ZF, Ren NQ, Li YF, Kunisue T, Gao DW, Kannan K (2011) Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. Environ Sci Technol 45(9):3909–3916. doi: 10.1021/Es2004057 CrossRefGoogle Scholar
  54. 54.
    Ruan T, Liu RZ, Fu Q, Wang T, Wang YW, Song SJ, Wang P, Teng M, Jiang GB (2012) Concentrations and composition profiles of benzotriazole UV stabilizers in municipal sewage sludge in China. Environ Sci Technol 46(4):2071–2079. doi: 10.1021/Es203376x CrossRefGoogle Scholar
  55. 55.
    Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59:208–224. doi: 10.1016/j.envint.2013.06.012 CrossRefGoogle Scholar
  56. 56.
    Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp 107:907–938. doi: 10.2307/3434573 CrossRefGoogle Scholar
  57. 57.
    Wang S, Yang J, Lou SJ, Yang J (2010) Wastewater treatment performance of a vermifilter enhancement by a converter slag-coal cinder filter. Ecol Eng 36(4):489–494. doi: 10.1016/j.ecoleng.2009.11.018 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina

Personalised recommendations