Advertisement

Night-Time Atmospheric Reactivity of Some Oxygenated Organic Compounds

  • B. Cabañas
  • P. MartínEmail author
  • S. Salgado
  • I. Colmenar
  • M-P. Gallego Iniesta
  • E. Martínez
  • A. Moreno
  • A. Tapia
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)

Abstract

The nitrate radical (NO3) is the most important atmospheric oxidant during the night-time for organic volatile compounds. In the review reported here, the available kinetic and product data for nitrate radical reactions with a series of oxygenated volatile organic compounds (OVOCs) are reviewed. The results cover the reactivity of NO3 towards unsaturated aldehydes, aliphatic alcohols and acrylate esters. The kinetic results obtained by different research groups on using various experimental techniques are compared and discussed. Trends in reactivity are analyzed, and studies on the primary reaction products, when available, are presented. The reaction mechanisms elucidated from the kinetic and product data are presented and discussed.

Kinetic data for the reactions of the OVOCS reviewed in this chapter with atmospheric oxidants are necessary to obtain a realistic representation of the chemistry of these compounds in tropospheric models, which are used to assess the impact of contaminants on air quality. The rate coefficients for the reactions of the oxidants with the OVOCs can be employed to calculate the tropospheric lifetimes of the OVOCs in the atmosphere with respect to each oxidant. The lifetimes of the reviewed compounds in their reactions with NO3 are summarized in this chapter, and the atmospheric relevance of the loss processes is analyzed in comparison to losses through reactions with other important atmospheric oxidants.

Keywords

Gas-phase reactivity Night-time reactivity NO3 radical Oxygenated compounds 

Notes

Acknowledgements

The authors acknowledge the financial support provided by the Consejería de Ciencia y Tecnología de la Junta de Comunidades de Castilla-La Mancha and Ministerio de Ciencia e Innovación of Spain.

References

  1. 1.
    Noxon JF, Norton RB, Henderson WR (1978) Observation of atmospheric NO3. Geophys Res Lett 5:675–678Google Scholar
  2. 2.
    Platt U, Perner D, Winner AM, Harris GW, Pitts JN Jr (1980) Detection of NO3 in the polluted troposphere by differential optical absorption. Geophys Res Lett 7:89–92Google Scholar
  3. 3.
    Schott G, Davidson N (1958) Shock waves in chemical kinetics: the decomposition of N2O5 at high temperatures. J Am Chem Soc 80:1841–1853Google Scholar
  4. 4.
    Morris ED Jr, Niki H (1974) Reaction of the nitrate radical with acetaldehyde and propylene. J Phys Chem 78:1337–1338Google Scholar
  5. 5.
    Wayne RP, Barnes I, Biggs P, Burrows JP, Canosa-Mas CE, Hjorth J, Le Bras G, Moortgat GK, Perner D, Poulet G, Restelli G, Sidebottom H (1991) The nitrate radical: physics, chemistry, and the atmosphere. Atmos Environ 25:1–203Google Scholar
  6. 6.
    Brown SS, Stutz J (2012) Nighttime radical observations and chemistry. Chem Soc Rev 41:6405–6447Google Scholar
  7. 7.
    Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere, theory, experiments and applications. Academic, San DiegoGoogle Scholar
  8. 8.
    Calvert JG, Mellouki A, Orlando JJ, Pilling MJ, Wallington TJ (2011) The mechanisms of atmospheric oxidation of the oxygenates. Oxford University Press, New YorkGoogle Scholar
  9. 9.
    Hoyle CR, Boy M, Donahue NM, Fry JL, Glasius M, Guenther A, Hallar AG, Huff K, Hartz MD, Petters T, Petaja T, Rosenoern T, Sullivan AP (2011) A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmos Chem Phys 11:321–343Google Scholar
  10. 10.
    König G, Brunda M, Puxbau H, Hewitt CN, Duckham SC, Rudolph J (1995) Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos Environ 29:861–874Google Scholar
  11. 11.
    McDonald RC, Fall R (1993) Detection of substantial emissions of methanol from plants to the atmosphere. Atmos Environ A 27:1709–1713Google Scholar
  12. 12.
    Bilde M, Mogelberg TE, Sehested J, Nielsen OJ, Wallington TJ, Hurley MD, Japar SM, Dill M, Orkin VL, Buckley TJ, Huie RE, Kurylo MJ (1997) Atmospheric chemistry of dimethyl carbonate: reaction with OH radicals, UV spectra of CH3OC(O)OCH2 and CH3OC(O)OCH2O2 radicals, reactions of CH3OC(O)OCH2O2 with NO and NO2, and fate of CH3OC(O)OCH2O radicals. Phys Chem 101:3514–3525Google Scholar
  13. 13.
    Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638Google Scholar
  14. 14.
    Mellouki A, Le Bras G, Sidebottom H (2003) Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase. Chem Rev 103:5077–5096Google Scholar
  15. 15.
    Noda J, Hallquist M, Langer S, Ljungström E (2000) Products from the gas-phase reaction of some unsaturated alcohols with nitrate radicals. Phys Chem Chem Phys 2:2555–2564Google Scholar
  16. 16.
    Baxley JS, Wells JR (1998) The hydroxyl radical reaction rate constant and atmospheric transformation products of 2-butanol and 2-pentanol. Int J Chem Kinet 30:745–752Google Scholar
  17. 17.
    Mellouki A, Oussar F, Lun X, Chakir A (2004) Kinetics of the reactions of the OH radical with 2-methyl-1-propanol, 3-methyl-1-butanol and 3-methyl-2-butanol between 241 and 373 K. Phys Chem Chem Phys 6:2951–2955Google Scholar
  18. 18.
    Jiménez E, Lanza B, Garzón A, Ballesteros B, Albaladejo J (2005) Atmospheric degradation of 2-butanol, 2-methyl-2-butanol and 2,3-dimethyl-2-butanol: OH kinetics and UV absorption cross section. J Phys Chem A 109:10903–10909Google Scholar
  19. 19.
    Langer S, Ljungström E (1995) Rates of reaction between the nitrate radical and some aliphatic alcohols. J Chem Soc Faraday Trans 91:405–410Google Scholar
  20. 20.
    Moreno A, Salgado MS, Martín MP, Martínez E, Cabañas B (2012) Kinetic study of the gas phase reactions of a series of alcohols with the NO3 radical. J Phys Chem A 116:10383–10389Google Scholar
  21. 21.
    Atkinson R, Carter WP (1984) Kinetics and mechanisms of gas phase reactions of ozone with organic compound under atmospheric conditions. Chem Rev 84:437–470Google Scholar
  22. 22.
    Ballesteros B, Garzón A, Jiménez E, Notario A, Albaladejo J (2007) Relative and absolute kinetic studies of 2-butanol and related alcohols with tropospheric Cl atoms. Phys Chem Chem Phys 9:1210–1218Google Scholar
  23. 23.
    Gallego-Iniesta MP, Moreno A, Martín MP, Tapia A, Cabañas B, Salgado MS (2010) Reactivity of 2-ethyl-1-hexanol in the atmosphere. Phys Chem Chem Phys 12:3294–3300Google Scholar
  24. 24.
    Peng CY, Lan CH, Dai YT (2006) Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel. Chemosphere 65:2054–2062Google Scholar
  25. 25.
    Wallington TJ, Atkinson R, Winer AM, Pitts JN Jr (1987) A study of the reaction NO3 + NO2 + M → N2O5 (M = N2, O2). Int J Chem Kinet 19:243–249Google Scholar
  26. 26.
    Canosa-Mas CE, Smith SJ, Toby S, Wayne RP (1989) Laboratory studies of the reactions of the nitrate radical with chloroform, methanol, hydrogen chloride and hydrogen bromide. J Chem Soc Faraday Trans 85:709–725Google Scholar
  27. 27.
    Chew AA, Atkinson R, Aschmann SM (1998) Kinetics of the gas-phase reactions of NO3 radicals with a series of alcohols, glycol ethers, ethers and chloroalkenes. J Chem Soc Faraday Trans 94:1083–1089Google Scholar
  28. 28.
    Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2006) Evaluated kinetic and photochemical data for atmospheric: volume II-gas phase reactions of organic species. J Atmos Chem Phys 6:3625–4055Google Scholar
  29. 29.
    IUPAC (2008) Subcommitee for gas kinetic data evaluation, evaluated gas kinetic data for atmospheric chemistry, www.iupac-kinetic.ch.cam.ac.uk
  30. 30.
    Moreno A, Salgado MS, Taccone R, Martín MP, Cabañas B (2014) Atmospheric degradation of saturated alcohols: room temperature rate coefficients for NO3 radical reactions. Atmos Environ 96:229–235Google Scholar
  31. 31.
    Aschmann S, Atkinson R (1995) Rate constants for the reactions of the NO3 radical with alkanes at 296 ± 2 K. Atmos Environ 29:2311–2316Google Scholar
  32. 32.
    Atkinson R, Aschmann SM, Pitts JN (1988) Rate constants for the gas-phase reactions of the nitrate radical with a series of organic compounds at 296. + −. 2 K. J Phys Chem 92:3454–3457Google Scholar
  33. 33.
    Dittgen M, Durrani M, Lehmann K (1997) Acrylic polymers: a review of pharmaceutical applications. STP Pharma Sci 7:403–437Google Scholar
  34. 34.
    Hervás-García A, Martínez-Lozano MA, Cabanes-Vila J, Barjau-Escribano A, Fos-Galve P (2006) Composite resins. A review of the materials and clinical indications. Med Oral Patol Oral Cir Bucal 11:215–220Google Scholar
  35. 35.
    Ryou M, Thompson CC (2006) Tissue adhesives: a review. Tech Gastrointest Endosc 8:33–37Google Scholar
  36. 36.
    Burns D, Doolan KP (2005) The discrimination of automotive clear coat paints indistinguishable by Fourier transform infrared spectroscopy via pyrolysis–gas chromatography–mass spectrometry. Anal Chim Acta 539:157–164Google Scholar
  37. 37.
    Bauer W Jr (2002) Methacrylic acid and derivatives. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  38. 38.
    Pankow JF, Luo W, Bender DA, Isabelle LM, Hollingsworth JS, Chen C, Asher WE, Zogorski JS (2003) Concentration and concurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmos Environ 37:5023–5046Google Scholar
  39. 39.
    Etievant PX, Azar M, Pham-Delegue H, Masson CJ (1984) Isolation and identification of volatile constituents of sunflowers (Helianthus annuus. L.). J Agric Food Chem 32:503–509Google Scholar
  40. 40.
    Isidorov V, Jdanova M (2002) Volatile organic compounds from leaves litter. Chemosphere 48:975–979Google Scholar
  41. 41.
    Klotz B, Barnes I, Imamura T (2004) Product study of the gas-phase reactions of O3, OH and NO3 radicals with methyl-ethyl-ether. Phys Chem Chem Phys 6:1725–1734Google Scholar
  42. 42.
    Smith DF, Melver CD, Kleindienst TE (1995) Kinetics and mechanism of the atmospheric oxidation of tertiary-amyl methyl ether. Int J Chem Kinet 27:453–472Google Scholar
  43. 43.
    Gai Y, Ge M, Wang W (2009) Rate constants for the gas phase reaction of ozone with n-butyl acrylate and ethyl methacrylate. Chem Phys Lett 473:57–60Google Scholar
  44. 44.
    Bernard F, Eyglunent G, Daële V, Mellouki A (2010) Kinetics and products of gas-phase reactions of ozone with methyl methacrylate, methyl acrylate and ethyl acrylate. J Phys Chem A 114:8376–8383Google Scholar
  45. 45.
    Wang K, Ge M, Wang W (2010) Kinetics of the gas-phase reactions of NO3 radicals with ethyl acrylate, n-butyl acrylate, methyl methacrylate and ethyl methacrylate. Atmos Environ 44:1847–1850Google Scholar
  46. 46.
    Salgado MS, Gallego-Iniesta MP, Martín P, Tapia A, Cabañas B (2011) Night-time atmospheric chemistry of methacrylates. Environ Sci Pollut Res 18:940–948Google Scholar
  47. 47.
    Gaona E, Blanco MB, Barnes I, Teruel MA (2013) Gas phase kinetics for the ozonolysis of n-butyl methacrylate, ethyl crotonate and vinyl propionate under atmospheric conditions. Chem Phys Lett 579:11–15Google Scholar
  48. 48.
    Teruel MA, Lane SI, Mellouki A, Solignac G, Le Bras G (2006) OH reaction rate constants and UV absorption cross-sections of unsaturated esters. Atmos Environ 40:3764–3772Google Scholar
  49. 49.
    Blanco MB, Teruel MA (2008) Photodegradation of butyl acrylate in the troposphere by OH radicals: kinetics and fate of 1,2-hydroxyalcoxy radicals. J Phys Org Chem 21:397–401Google Scholar
  50. 50.
    Canosa-Mas CE, Carr S, King MD, Shallcross DE, Thompson KC, Wayne RP (1999) Kinetic study of the reactions of NO3 with methyl vinyl ketone, methacrolein, acrolein, methyl acrylate and methyl methacrylate. Phys Chem Chem Phys 1:4195–4202Google Scholar
  51. 51.
    Canosa CE, Flugge ML, King MD, Wayne RP (2005) An experimental study of the gas-phase reaction of the radical NO3 with α, β-unsaturated compounds. Phys Chem Chem Phys 7:643–650Google Scholar
  52. 52.
    Atkinson R (1997) Gas-phase tropospheric chemistry of volatile organic compounds. 1. Alkanes and alkenes. J Phys Chem Ref Data 26:215–290Google Scholar
  53. 53.
    Saunders SM, Baulch DL, Cooke KM, Pilling MJ (1994) Smurthwaite PI. Kinetics and mechanisms of the reactions of OH with some oxygenated compounds of importance in tropospheric chemistry. Int J Chem Kinet 26:113–130Google Scholar
  54. 54.
    Blanco MB, Taccone RA, Lane SI, Teruel MA (2006) On the OH initiated degradation of methacrylates in the troposphere: gas-phase kinetics and formation of pyruvates. Chem Phys Lett 429:389–394Google Scholar
  55. 55.
    Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2009) OH-initiated degradation of unsaturated esters in the atmosphere: kinetics in the temperature range of 287–313 K. J Phys Chem A 113:5958–5965Google Scholar
  56. 56.
    Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2009) Temperature-dependent rate coefficients for the reactions of Cl atoms with methyl methacrylate, methyl acrylate and butyl methacrylate at atmospheric pressure. Atmos Environ 43:5996–6002Google Scholar
  57. 57.
    Colomer JP, Blanco MB, Peñéñory AB, Barnes I, Wiesen P, Teruel MA (2013) FTIR gas-phase kinetic study on the reactions of OH radicals and Cl atoms with unsaturated esters: Methyl 3,3-dimethylacrylate, (E)-ethyl tiglate and methyl-3-butenoate. Atmos Environ 79:546–552Google Scholar
  58. 58.
    Martín MP, Gallego-Iniesta MP, Espinosa JL, Tapia A, Cabañas B, Salgado MS (2010) Gas-phase reactions of unsaturated esters with Cl atoms. Environ Sci Pollut Res 17:539–546Google Scholar
  59. 59.
    Atkinson R (1991) Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds. J Phys Chem Ref Data 20:459–507Google Scholar
  60. 60.
    Tuazon EC, Alvarado A, Aschmann SM, Atkinson R, Arey J (1999) Products of the gas-phase reactions of 1,3-butadiene with OH and NO3 radicals. Environ Sci Technol 33:3586–3595Google Scholar
  61. 61.
    Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2010) FTIR product distribution study of the Cl and OH initiated degradation of methyl acrylate at atmospheric pressure. Environ Sci Technol 44:7031–7036Google Scholar
  62. 62.
    Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2014) Products and mechanism of the reactions of OH radicals and Cl atoms with methyl methacrylate (CH2 = C(CH3)C(O)OCH3) in the presence of NOx. Environ Sci Technol 48:1692–1699Google Scholar
  63. 63.
    Grosjean D (1990) Atmospheric chemistry of toxic contaminants. Unsaturated aliphatics: acrolein, acrylonitrile, maleic anhydride. J Air Waste Manage Assoc 40:1664–1668Google Scholar
  64. 64.
    Environmental Protection Agency, http://www.epa.gov
  65. 65.
    Cabañas B, Salgado S, Martín P, Baeza MT, Martínez E (2001) Night-time atmospheric loss process for unsaturated aldehydes: reaction with NO3 radicals. J Phys Chem A 105:4440–4445Google Scholar
  66. 66.
    Salgado MS, Monedero E, Villanueva F, Martín P, Tapia A, Cabañas B (2008) Night time atmospheric fate of acrolein and crotonaldehyde. Environ Sci Technol 42:2394–2400Google Scholar
  67. 67.
    Gertler AW, Bagley ST, Dippel WA (1998) Measurements of dioxin and furan emissions factors from heavy-duty diesel vehicles. J Air Waste Manage Assoc 48:276–278Google Scholar
  68. 68.
    Ciccioli P, Brancaleoni E, Frattoni M, Cecinato A, Pinciarelli L (2001) Determination of volatile organic compounds (VOC) emitted from biomass burning of mediterranean vegetation species by GC-MS. Anal Lett 34:937–955Google Scholar
  69. 69.
    Lev-On M, Le Travec C, Uijlein J, Alleman TL, Lawson DR, Vertin K, Thompson G.H, Gautam M, Wayne S, Okamoto R, Rieger P, Yee G, Ospital J, Zielinska B, Sagebiel J, Chatterjee S, Hallstrom K (2002) Chemical speciation of exhaust emissions from trucks and buses fuelled on ultra-low sulphur diesel and CNG. Society of Automotive Engineers, SP-2002, SP-1673Google Scholar
  70. 70.
    Yokelson RJ, Karl T, Artaxo P, Blake DR, Christian TJ, Griffith DWT, Guenther A, Hao WM (2007) The tropical forest and fire emissions experiment: overview and airborne fire emission factor measurements. Atmos Chem Phys Discuss 7:5175–5196Google Scholar
  71. 71.
    Villanueva F, Cabañas B, Monedero E, Salgado S, Bejan I, Martín P (2009) Atmospheric degradation of alkylfurans with chlorine atoms: product and mechanistic study. Atmos Environ 43:2804–2813Google Scholar
  72. 72.
    Ameur LA, Rega B, Giampaoli P, Trystam G, Birlouez-Aragon I (2008) The fate of furfurals and other volatile markers during the baking process of a model cookie. Food Chem 111:758–763Google Scholar
  73. 73.
    Bail S, Krist S, Masters E, Unterweger H, Buchbauer G (2009) Volatile compounds of shea butter samples made under different production conditions in western, central and eastern Africa. J Food Compos Anal 22:738–744Google Scholar
  74. 74.
    Moon JK, Shibamoto T (2009) Role of roasting conditions in the profile of volatile flavour chemicals formed from coffee beans. J Agric Food Chem 57:5823–5831Google Scholar
  75. 75.
    Bierbach A, Barnes I, Becker KH (1995) Product and kinetic study of the OH-initiated gas-phase oxidation of furan, 2-methylfuran and furanaldehydes at ≈ 300 K. Atmos Environ 29:2651–2660Google Scholar
  76. 76.
    Berndt T, Böge O, Rolle W (1997) Products of gas-phase reactions of NO3 radicals with furan and tetramethylfuran. Environ Sci Technol 31:1157–1162Google Scholar
  77. 77.
    Villanueva F, Barnes I, Monedero E, Salgado MS, Gómez MV, Martín P (2007) Primary distribution from the Cl-atom initiated atmospheric degradation of furan: environmental implications. Atmos Environ 41:8796–8810Google Scholar
  78. 78.
    Arey A, Obermeyer G, Aschamann SM, Chattopadhyay S, Cusick RD, Atkinson R (2009) Dicarbonyl products of the OH radical-initiated reaction of a series of aromatic hydrocarbons. Environ Sci Technol 43:683–689Google Scholar
  79. 79.
    Gómez-Álvarez E, Borrás E, Viidanoja J, Hjorth J (2009) Unsaturated dicarbonyl products from the OH-initiated photo-oxidation of furan, 2-methylfuran and 3-methylfuran. Atmos Environ 43:1603–1612Google Scholar
  80. 80.
    Atkinson R (1994) Gas phase tropospheric chemistry of organic compounds. J Phys Chem Ref Data Monogr 2:1–216Google Scholar
  81. 81.
    Zhao Z, Husainy S, Smith GD (2011) Kinetics studies of the gas-phase reactions of NO3 radicals with series of 1-alkenes, dienes, cycloalkenes, alkenols, and alkenals. J Phys Chem A 115:12161–12172Google Scholar
  82. 82.
    Kerdouci J, Picquet-Varrault B, Durand-Jolibois R, Gaimoz C, Doussin JF (2012) An experimental study of the gas-phase reactions of NO3 radicals with a series of unsaturated aldehydes:trans-2-hexenal, trans-2-heptenal, and trans-2-octenal. J Phys Chem A 116:10135–10142Google Scholar
  83. 83.
    Colmenar I, Cabañas B, Martínez E, Salgado MS, Martín P (2012) Atmospheric fate of a series of furanaldehydes by their NO3 reactions. Atmos Environ 54:177–184Google Scholar
  84. 84.
    Martín P, Cabañas B, Colmenar I, Salgado MS, Villanueva F, Tapia A (2013) Reactivity of E-butenedial with the major atmospheric oxidants. Atmos Environ 70:351–360Google Scholar
  85. 85.
    Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101Google Scholar
  86. 86.
    Atkinson R (2007) Gas-phase tropospheric chemistry of organic compounds: a review. Atmos Environ 41:200–240Google Scholar
  87. 87.
    Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou G, Wilson J (2005) Organic aerosols and global climate modelling. A review. Atmos Chem Phys 5:1053–1123Google Scholar
  88. 88.
    Atkinson R, Aschmann SM, Goodman MA (1987) Kinetics of the gas-phase reactions of nitrate radicals with a series of alkynes, haloalkenes, and α, β-unsaturated aldehydes. Int J Chem Kinet 19:299–307Google Scholar
  89. 89.
    Ullerstam M, Ljungstrom E, Langer S (2001) Reactions of acrolein, crotonaldehyde and pivalaldehyde with Cl atoms: structure activity relationship and comparison with OH and NO3 reactions. Phys Chem Chem Phys 3:986–992Google Scholar
  90. 90.
    Cabañas B, Martín P, Salgado S, Ballesteros B, Martínez E (2001) An experimental study on the temperature dependence for the gas-phase reactions of NO3 radicals with a series of aliphatic aldehydes. J Atmos Chem 40:23–39Google Scholar
  91. 91.
    Atkinson R, Arey J, Aschmann SM, Corchnoy SB, Shu Y (1995) Rate constants for the gas-phase reactions of cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH and NO3 radicals and O3 at 296 ± 2 K, and OH radical formation yields from the O3 reactions. Int J Chem Kinet 27:941–955Google Scholar
  92. 92.
    Klotz B, Bierbach A, Barnes I, Becker KH (1995) Kinetic and mechanistic study of the atmospheric chemistry of muconaldehydes. Environ Sci Technol 29:2322–2332Google Scholar
  93. 93.
    IUPAC (2001) Subcommittee for gas kinetic data evaluation, evaluated gas kinetic data for atmospheric chemistry, www.iupac-kinetic.ch.cam.ac.uk
  94. 94.
    Canosa-Mas CE, Cotter ESN, Duffy J, Thompson KC, Wayne RP (2001) The reactions of atomic chlorine with acrolein, methacrolein and methyl vinyl ketone. Phys Chem Chem Phys 3:3075–3084Google Scholar
  95. 95.
    Pfrang C, Martin RS, Nalty A, Waring R, Canosa-Mas CE, Wayne RP (2005) Gas-phase rate coefficients for the reactions of nitrate radicals with (Z)-pent-2-ene, (E) pent-2-ene, (Z)-hex-2-ene, (E)-hex-2-ene, (Z)-hex-3-ene, (E)-hex-3-ene and (E)-3 methylpent-2-ene at room temperature. Phys Chem Chem Phys 7:2506–2512Google Scholar
  96. 96.
    Noda J, Holm C, Nyman G, Langer S, Ljungstrom E (2003) Kinetics of the gas phase reaction of n-C6-C10 aldehydes with the nitrate radical. Int J Chem Kinet 35:120–129Google Scholar
  97. 97.
    Ellermann T, Nielsen OJ, Skov H (1992) Absolute rate constants for the reaction of NO3 radicals with a series of dienes at 295 K. Chem Phys Lett 200:224–229Google Scholar
  98. 98.
    Grosjean D, Grosjean E, Williams EL (1992) Environmental persistence of organic compounds estimated from structure-reactivity and linear free energy relationships unsaturated aliphatics. Atmos Environ A 26:1395–1405Google Scholar
  99. 99.
    Cabañas B, Tapia A, Villanueva F, Salgado S, Monedero E, Martín P (2008) Kinetic study of 2-furanaldehyde, 3-furanaldehyde and 5-methyl-2- furanaldehyde reactions initiated by Cl atoms. Int J Chem Kinet 40:670–678Google Scholar
  100. 100.
    Martínez E, Cabañas B, Aranda A, Wayne RP (1996) Kinetic study of the reactions of NO3 with 3-chloropropene, 3-bromopropene and 3-iodopropene using LIF detection. J Chem Soc Faraday Trans 92:4385–4389Google Scholar
  101. 101.
    Martínez E, Cabañas B, Aranda A, Albaladejo J, Wayne RP (1997) Absolute rate coefficients for the reaction of NO3 with pent-1-ene and hex-1-ene at T = 228 to 433 K determined using LIF detection. J Chem Soc Faraday Trans 93:2043–2057Google Scholar
  102. 102.
    Martínez E, Cabañas B, Aranda A, Martin P, Salgado S (1999) Absolute rate coefficients for the gas-phase reactions of NO3 radicals with a series of monoterpenes at T = 298 to 433K. J Atmos Chem 33:265–282Google Scholar
  103. 103.
    Martínez E, Cabañas B, Aranda A, Martin P, Notario A, Salgado S (1999) Study of the NO3 radical reactivity: reaction with cyclic alkenes. J Phys Chem 103:5321–5327Google Scholar
  104. 104.
    Bierbach A, Barnes I, Becker KH, Wiesen E (1994) Atmospheric chemistry of unsaturated carbonyls: butenedial, 4-oxo-2-pentenal, 3-hexene-2,5-dione, maleic anhydride, 3H-furan-2-one, and 5-methyl-3H-furan-2-one. Environ Sci Technol 28:715–729Google Scholar
  105. 105.
    Marston G, Monks PS, Canosa-Mas C, Wayne RP (1993) Correlations between rate parameters and calculated molecular properties in the reactions of the nitrate radical with alkenes. J Chem Soc Faraday Trans 89:3899–3905Google Scholar
  106. 106.
    Colmenar Ph Thesis 2013. Degradación e implicaciones atmosféricas de aldehídos insaturados. Estudio cinético y mecanismos de reacción. Universidad de Castilla La ManchaGoogle Scholar
  107. 107.
    D’Anna B, Nielsen CJ (1997) Kinetic study of the vapour-phase reaction between aliphatic aldehydes and the nitrate radical. J Chem Soc Faraday Trans 93:3479–3483Google Scholar
  108. 108.
    Shu Y, Atkinson R (1995) Atmospheric lifetimes and fates of a series of sesquiterpenes. J Geophys Res Atmos 100:7275–7281Google Scholar
  109. 109.
    Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Unexpected high concentrations of molecular chlorine in coastal air. Nature 394:353–356Google Scholar
  110. 110.
    Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2009) The Cl-initiated oxidation of CH3C(O)OCH = CH2, CH3C(O)OCH2CH = CH2, and CH2 = CHC(O)O(CH2)3CH3 in the troposphere. Environ Sci Pollut Res 16:641–648Google Scholar
  111. 111.
    Mielke LH, Furgeson A, Osthoff HD (2011) Observation of ClNO2 in a mid-continental urban environment. Environ Sci Technol 45:8889–8896Google Scholar
  112. 112.
    Phillips GJ, Tang MJ, Thieser J, Brickwedde B, Schuster G, Bohn B, Lelieveld J, Crowley JN (2012) Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions. Geophys Res Lett. doi: 10.1029/2012GL051912 Google Scholar
  113. 113.
    Galán E, Gonzalez I, Fabbri B (2002) Estimation of fluorine and chlorine emissions from Spanish structural ceramic industries. The case study of Bailén area, Southern Spain. Atmos Environ 9:5289–5298Google Scholar
  114. 114.
    Roberts JM (1995) In: Singh HB (ed) Composition chemistry and climate of the atmosphere. VNR-Verlag, New YorkGoogle Scholar
  115. 115.
    Olszyna KJ, Bailey EM, Simonaitis R, Meagher JF (1994) O3 and NOx relationships at a rural site. J Geophys Res A 99:14557–14563Google Scholar
  116. 116.
    Peak MJ, Belser WL (1969) Some effects of the air pollutant, peroxyacetyl nitrate, upon deoxyribonucleic acid and upon nucleic acid bases. Atmos Environ 3:385–397Google Scholar
  117. 117.
    Taylor OC (1969) Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant. J Air Pollut Control Assoc 19:347–351Google Scholar
  118. 118.
    Kleindienst TE, Shepson PB, Smith DF, Hudgens EE, Nero CM, Cupitt LT, Bufalini JJ, Claxton LD (1990) Comparison of mutagenic activities of several peroxyacyl nitrates. Environ Mol Mutagen 16:70–80Google Scholar
  119. 119.
    IARC, International Agency for Research on Cancer (2002) Monographs on the evaluation of carcinogenic risks to humans. World Health Organization, http://monographs.iarc.fr

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • B. Cabañas
    • 1
    • 2
  • P. Martín
    • 1
    • 2
    Email author
  • S. Salgado
    • 1
    • 2
  • I. Colmenar
    • 1
    • 2
  • M-P. Gallego Iniesta
    • 1
    • 2
  • E. Martínez
    • 1
    • 2
  • A. Moreno
    • 1
    • 2
  • A. Tapia
    • 1
    • 2
  1. 1.Departamento de Química Física, Facultad de Ciencias y Tecnologías QuímicasUniversidad de Castilla La ManchaCiudad RealSpain
  2. 2.Instituto de Combustión y Contaminación Atmosférica (ICCA)Universidad de Castilla La ManchaCiudad RealSpain

Personalised recommendations