Skip to main content

Mercury Soil Pollution in Spain: A Review

  • Chapter
  • First Online:
Book cover Environment, Energy and Climate Change I

Abstract

Spain has been the main mercury producer worldwide, with mines or mining districts scattered across its geography. In particular, two main areas show generally higher contents of this element in the soils, namely, Asturias (or the Cantabrian Zone in geological terms) and the Almadén area in the Southern Central Iberian Zone. In this review six different aspects are considered: (1) distribution of total concentrations, (2) mercury mobility and availability, (3) soil to plant transfer, (4) mercury transfer to animal biota, (5) soil to atmosphere transfer and (6) possibility of remediation for sites polluted by mercury. The conclusions drawn from the available results highlight significant differences in contents, mobility and transfer processes depending on the different types of mercury pollution and different climatic conditions. A general background level for Spanish soils can be established at 20 μg kg−1, but very different ranges can be found in different areas according to the volumetric importance of each source and depending on other local factors. Mercury mining appears to be the most important source of soil pollution, and studies on the possible mobility and transfer to other environmental compartments demonstrate the highest levels at which mercury affects the population living in the proximity of such sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurland LT, Faro SN, Siedler H (1960) Minamata disease. The outbreak of a neurologic disorder in Minamata, Japan, and its relationship to the ingestion of seafood contaminated by mercuric compounds. World Neurol 1:370–395

    CAS  Google Scholar 

  2. Rustam H, Hamdi T (1974) Methyl mercury poisoning in Iraq. A neurological study. Brain 97(3):499–510

    Article  Google Scholar 

  3. Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, Benson SA (2003) Status review of mercury control options for coal-fired power plants (Review). Fuel Process Technol 82:89–165

    Article  CAS  Google Scholar 

  4. Díaz-Somoano M, Unterberger S, Hein KRG (2007) Mercury emission control in coal-fired plants: the role of wet scrubbers. Fuel Process Technol 88(3):259–263

    Article  Google Scholar 

  5. Widmer NC, Cole JA, Seeker WR, Gaspar JA (1998) Practical limitation of mercury speciation in simulated municipal waste incinerator flue gas. Combust Sci Technol 134(1–6):315–326

    Article  CAS  Google Scholar 

  6. Saupé F (1990) Geology of the Almaden mercury deposit, province of Ciudad Real, Spain. Econ Geol 85(3):482–510

    Article  Google Scholar 

  7. Hernández A, Jébrak M, Higueras P, Oyarzun R, Morata D, Munhá J (1999) The Almaden mercury mining district, Spain. Miner Deposita 34(5–6):539–548

    Google Scholar 

  8. Fernández-Martínez R, Rucandio MI (2003) Study of extraction conditions for the quantitative determination of Hg bound to sulfide in soils from Almaden (Spain). Anal Bioanal Chem 375(8):1089–1096

    Google Scholar 

  9. Fernández-Martínez R, Rucandio MI (2005) Study of the suitability of HNO3 and HCl as extracting agents of mercury species in soils from cinnabar mines. Anal Bioanal Chem 381(8):1499–1506

    Article  Google Scholar 

  10. Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. J Geochem Explor 80(1):95–104

    Article  CAS  Google Scholar 

  11. Higueras P, Oyarzun R, Lillo J, Sánchez-Hernández JC, Molina JA, Esbrí JM, Lorenzo S (2006) The Almadén district (Spain): Anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356(1–3):112–124

    Article  CAS  Google Scholar 

  12. Gray JE, Hines ME, Higueras PL, Adatto I, Lasorsa BK (2004) Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén Mining District, Spain. Environ Sci Technol 38(16):4285–4292

    Article  CAS  Google Scholar 

  13. Sánchez DM, Quejido AJ, Fernández M, Hernández C, Schmid T, Millán R, González M, Aldea M, Martin R, Morante R (2005) Mercury and trace element fractionation in Almadén soils by application of different sequential extraction procedures. Anal Bioanal Chem 381(8):1507–1513

    Article  Google Scholar 

  14. Bernaus A, Gaona X, Valiente M (2005) Characterisation of Almadén mercury mine environment by XAS techniques. J Environ Monit 7(8):771–777

    Article  CAS  Google Scholar 

  15. Bernaus A, Gaona X, Esbrí JM, Higueras P, Falkenberg G, Valiente M (2006) Microprobe techniques for speciation analysis and geochemical characterization of mine environments: the mercury district of Almadén in Spain. Environ Sci Technol 40(13):4090–4095

    Article  CAS  Google Scholar 

  16. Bueno PC, Bellido E, Rubí JAM, Ballesta RJ (2009) Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environ Geol 56(5):815–824

    Article  CAS  Google Scholar 

  17. Esbrí JM, Bernaus A, Ávila M, Kocman D, García-Noguero EM, Guerrero B, Gaona X, Alvarez R, Perez-Gonzalez G, Valiente M, Higueras P, Horvat M, Loredo J (2010) XANES speciation of mercury in three mining districts - Almadén, Asturias (Spain), Idria (Slovenia). J Synchrotron Radiat 17(2):179–186

    Article  Google Scholar 

  18. Llanos W, Higueras P, Oyarzun R, Esbrí JM, López-Berdonces MA, García-Noguero EM, Martínez-Coronado A (2010) The MERSADE (European Union) project: Testing procedures and environmental impact for the safe storage of liquid mercury in the Almadén district, Spain. Sci Total Environ 408(20):4901–4905

    Article  CAS  Google Scholar 

  19. Millán R, Schmid T, Sierra MJ, Carrasco-Gil S, Villadóniga M, Rico C, Ledesma DMS, Puente FJD (2011) Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl Geochem 26(2):174–181

    Article  Google Scholar 

  20. Martínez-Coronado A, Oyarzun R, Esbrí JM, Llanos W, Higueras P (2011) Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): The old metallurgical precinct (1794 to 1861 AD) and surrounding areas. J Geochem Explor 109(1–3):70–77

    Article  Google Scholar 

  21. Lindberg SE, Jackson DR, Huckabee JW (1979) Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. J Environ Qual 8(4):572–578

    Article  CAS  Google Scholar 

  22. Huckabee JW, Sanz Diaz F, Janzen SA, Solomon J (1983) Distribution of mercury in vegetation at Almaden, Spain. Environ Pollut A 30(3):211–224

    Article  CAS  Google Scholar 

  23. Rodriguez L, Lopez-Bellido FJ, Carnicer A, Alcalde-Morano V (2003) Phytoremediation of mercury-polluted soils using crop plants. Fresen Environ Bull 12(9):967–971

    CAS  Google Scholar 

  24. Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernandez M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368(1):79–87

    Article  Google Scholar 

  25. Millán R, Lominchar MA, López-Tejedor I, Rodríguez-Alonso J, Schmid T, Sierra MJ (2012) Behavior of mercury in the Valdeazogues riverbank soil and transfer to Nerium oleander L. J Geochem Explor 123:136–142

    Article  Google Scholar 

  26. Molina JA, Oyarzun R, Esbrí JM, Higueras P (2006) Mercury accumulation in soils and plants in the Almadén mining district, Spain: One of the most contaminated sites on Earth. Environ Geochem Health 28(5):487–498

    Article  CAS  Google Scholar 

  27. Sierra MJ, Millán R, Esteban E, Cardona AI, Schmid T (2008) Evaluation of mercury uptake and distribution in Vicia sativa L. applying two different study scales: Greenhouse conditions and lysimeter experiments. J Geochem Explor 96(2–3):203–209

    Article  CAS  Google Scholar 

  28. Sierra MJ, Millán R, Esteban E (2008) Potential use of Solanum melongena in agricultural areas with high mercury background concentrations. Food Chem Toxicol 46(6):2143–2149

    Article  CAS  Google Scholar 

  29. Sierra MJ, Millán R, Esteban E (2009) Mercury uptake and distribution in Lavandula stoechas plants grown in soil from Almadén mining district (Spain). Food Chem Toxicol 47(11):2761–2767

    Article  CAS  Google Scholar 

  30. Sierra MJ, Millán R, Cardona AI, Schmid T (2011) Potential cultivation of Hordeum vulgare L. in soils with high mercury background concentrations. Int J Phytoremediation 13(8):765–778

    Article  CAS  Google Scholar 

  31. Sierra MJ, Rodríguez-Alonso J, Millán R (2012) Impact of the lavender rhizosphere on the mercury uptake in field conditions. Chemosphere 89(11):1457–1466

    Article  CAS  Google Scholar 

  32. Ruiz-Díez B, Quiñones MA, Fajardo S, López-Berdonces MA, Higueras P, Fernández-Pascual M (2012) Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl Microbiol Biotechnol 96(2):543–554

    Article  Google Scholar 

  33. Higueras P, Amorós JA, Esbrí JM, García-Navarro FJ, Pérez de los Reyes C, Moreno G (2012) Time and space variations in mercury and other trace element contents in olive tree leaves from the Almadén Hg-mining district. J Geochem Explor 123:143–151

    Google Scholar 

  34. Moreno-Jiménez E, Gimeno H, Gamarra R, Esteban E (2013) Evidence of a new Hg-tolerant ecotype of Rumex induratus from Almadén (Ciudad Real, Spain). Plant Biosyst 148(1):58–63

    Article  Google Scholar 

  35. Quiñones MA, Ruiz-Díez B, Fajardo S, López-Berdonces MA, Higueras PL, Fernández-Pascual M (2013) Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain. Plant Physiol Biochem 73:168–175

    Article  Google Scholar 

  36. Dago A, González I, Ariño C, Martínez-Coronado A, Higueras P, Díaz-Cruz JM, Esteban M (2014) Evaluation of the mercury stress produced in plants by the analysis of phytochelatins and its Hg complexes induced in Asparagus acutifolius and Retama sphaerocarpa from the Almadén mining district. Environ Sci Technol 48(11):6256–6263

    Google Scholar 

  37. Moreno T, Higueras P, Jones T, McDonald I, Gibbons W (2005) Size fractionation in mercury-bearing airborne particles (HgPM10) at Almadén, Spain: implications for inhalation hazards around old mines. Atmos Environ 39:6409–6419

    Article  CAS  Google Scholar 

  38. Berzas Nevado JJ, Rodríguez Martin-Doimeadios RC, Mateo R, Rodríguez Fariñas N, Rodríguez-Estival J, Patiño Ropero MJ (2012) Mercury exposure and mechanism of response in large game using the Almadén mercury mining area (Spain) as a case study. Environ Res 112:58–66

    Article  CAS  Google Scholar 

  39. Díez S, Esbrí JM, Tobias A, Higueras P, Martínez-Coronado A (2011) Determinants of exposure to mercury in hair from inhabitants of the largest mercury mine in the world. Chemosphere 84:571–577

    Article  Google Scholar 

  40. Gray JE, Plumlee GS, Morman SA, Higueras PL, Crock JG, Lowers HA, Witten ML (2010) In vitro studies evaluating leaching of mercury from mine waste calcine using simulated human body fluids. Environ Sci Technol 44(12):4782–4788

    Article  CAS  Google Scholar 

  41. Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. J Environ Monit 13(12):3460–3468

    Article  CAS  Google Scholar 

  42. Carmona M, Llanos W, Higueras P, Kocman D (2013) Mercury emissions in equilibrium: A novel approach for the quantification of mercury emissions from contaminated soils. Anal Methods 5(11):2793–2801

    Article  CAS  Google Scholar 

  43. Navarro A, Cardellach E, Corbella M (2009) Mercury mobility in mine waste from Hg-mining areas in Almería, Andalusia (Se Spain). J Geochem Explor 101(3):236–246

    Article  CAS  Google Scholar 

  44. Navarro A, Cardellach E, Cañadas I, Rodríguez J (2013) Solar thermal vitrification of mining contaminated soils. Int J Miner Process 119:65–74

    Article  CAS  Google Scholar 

  45. García-Rubio A, Rodríguez-Maroto JM, Gómez-Lahoz C, García-Herruzo F, Vereda-Alonso C (2011) Electrokinetic remediation: The use of mercury speciation for feasibility studies applied to a contaminated soil from Almadén. Electrochim Acta 56(25):9303–9310

    Article  Google Scholar 

  46. Subirés-Muñoz JD, García-Rubio A, Vereda-Alonso C, Gómez-Lahoz C, Rodríguez-Maroto JM, García-Herruzo F, Paz-García JM (2011) Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Sep Purif Technol 79(2):151–156

    Article  Google Scholar 

  47. Sierra C, Menéndez-Aguado JM, Afif E, Carrero M, Gallego JR (2011) Feasibility study on the use of soil washing to remediate the As-Hg contamination at an ancient mining and metallurgy area. J Hazard Mater 196:93–100

    Article  CAS  Google Scholar 

  48. Luque C (1985) Mercury mineralization in Cantabria mountains (Las mineralizaciones de mercurio de la Cordillera Cantábrica). PhD Dissertation, University of Oviedo, In Spanish

    Google Scholar 

  49. Luque C, Gutiérrez-Claverol M (2006) Mercury mining in Asturias; historic features (La minería del mercurio en Asturias; Rasgos históricos). Eujoa Artes Gráficas, Oviedo, In Spanish

    Google Scholar 

  50. Luque C, Martínez-Garcia E, Garcia-Iglesias J, Gutierrez-Claverol M (1991) Mineralization of Hg-As-Sb in the western edge of Central Asturias Carboniferous basin and its possible relation to tectonic: La Peña-El Terronal mine. (Mineralizaciones de Hg–As–Sb en el borde occidental de la cuenca Carbonífera central de Asturias y su posible relación con la tectónica: el yacimiento de El Terronal-La Peña). Bol Soc Esp Mineral 14:161–170, In Spanish

    Google Scholar 

  51. Loredo J, Ordóñez A, Gallego JR, Baldo C, García-Iglesias J (1999) Geochemical characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, northern Spain). J Geochem Explor 67(1–3):377–390

    Article  CAS  Google Scholar 

  52. Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2005) Distribution and mobility of mercury in soils from an old mining area in Mieres, Asturias (Spain). Sci Total Environ 346:200–212

    Article  Google Scholar 

  53. Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio MI (2006) Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environ Pollut 142(2):217–226

    Article  Google Scholar 

  54. Loredo J, Ordóñez A, Álvarez R (2006) Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury-mining area (Asturias, Spain). J Hazard Mater 136(3):455–467

    Article  CAS  Google Scholar 

  55. Ordóñez A, Álvarez R, Loredo J (2013) Asturian mercury mining district (Spain) and the environment: A review. Environ Sci Pollut Res 20(11):7490–7508

    Article  Google Scholar 

  56. López Alonso M, Benedito JL, Miranda M, Castillo C, Hernández J, Shore RF (2003) Mercury concentrations in cattle from NW Spain. Sci Total Environ 302(1–3):93–100

    Article  Google Scholar 

  57. López Alonso M, Benedito JL, Miranda M, Fernández JA, Castillo C, Hernández J, Shore RF (2003) Large-scale spatial variation in mercury concentrations in cattle in NW Spain. Environ Pollut 125(2):173–181

    Article  Google Scholar 

  58. Miranda M, López-Alonso M, Castillo C, Hernández J, Prieto F, Benedito JL (2003) Some toxic elements in liver, kidney and meat from calves slaughtered in Asturias (Northern Spain). Eur Food Res Technol 216(4):284–289

    CAS  Google Scholar 

  59. García-Sánchez A, Murciego A, Álvarez-Ayuso E, Santa Regina I, Rodríguez-González MA (2009) Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain). J Hazard Mater 168:1319–1324

    Article  Google Scholar 

  60. Martínez J, Navarro A, Lunar R (1997) First reference of pyrite framboids in a Hg–Sb mineralization: the Valle del Azogue mineral deposit (SE Spain). N Jb Miner Mh Jg 4:175–184

    Google Scholar 

  61. Navarro A, Biester H, Mendoza JL, Cardellach E (2006) Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environ Geol 49(8):1089–1101

    Article  CAS  Google Scholar 

  62. Becker GF (1888) Geology of the quicksilver deposits of the Pacific Slope with Atlas. Monogr US Geol Surv 23442:27–32

    Google Scholar 

  63. Viladevall M, Font X, Navarro A (1999) Geochemical mercury survey in the Azogue Valley (Betic area, SE Spain). J Geochem Explor 66(1–2):27–35

    Article  CAS  Google Scholar 

  64. Navarro A, Martínez-Frías J, Font X, Viladevall M (2000) Modelling of modern mercury vapor transport in an ancient hydrothermal system: environmental and geochemical implications. Appl Geochem 15:281–294

    Article  Google Scholar 

  65. Navarro A (2008) Review of characteristics of mercury speciation and mobility from areas of mercury mining in semi-arid environments. Rev Environ Sci Biotechnol 7:287–306

    Article  CAS  Google Scholar 

  66. Esbrí JM, Baselga L, Higueras P (2009) Evaluation of Mercury dispersion from Chlor-alkali industries in Spain. In: Theophanides M, Theophanides T (eds) Environmental Engineering and Management. ATINER, Atenas, pp 121–128

    Google Scholar 

  67. Carrasco L, Díez S, Soto DX, Catalan J, Bayona JM (2008) Assessment of mercury and methylmercury pollution with zebra mussel (Dreissena polymorpha) in the Ebro River (NE Spain) impacted by industrial hazardous dumps. Sci Total Environ 407:178–184

    Article  CAS  Google Scholar 

  68. Navarro A, Quirós L, Casado M, Faria M, Carrasco L, Benejam L, Benito J, Díez S, Raldúa D, Barata C, Bayona JM, Piña B (2009) Physiological responses to mercury in feral carp populations inhabiting the low Ebro River (NE Spain), a historically contaminated site. Aquat Toxicol 93:150–157

    Article  CAS  Google Scholar 

  69. Faria M, Huertas D, Soto DX, Grimalt JO, Catalan J, Riva MC, Barata C (2010) Contaminant accumulation and multi-biomarker responses in field collected zebra mussels (Dreissena polymorpha) and crayfish (Procambarus clarkii), to evaluate toxicological effects of industrial hazardous dumps in the Ebro river (NE Spain). Chemosphere 78:232–240

    Article  CAS  Google Scholar 

  70. Grimalt JO, Sánchez-Cabeza JA, Palanques A, Catalán J (2003) Estudi de la dinàmica dels compostos organoclorats persistents i altres contaminants en els sistemes aquàtics continentals. Catalan Water Agency, Government of Catalonia, ACA/CIRIT, p 256; In Catalonian

    Google Scholar 

  71. FOREGS (2005) Geochemical Atlas of Europe. Part 1: background information, methodology and maps. In: Salminen R (ed) Geological survey of Finland, Espoo, p 526

    Google Scholar 

  72. IGME (2012) Geochemical atlas of Spain (Atlas Geoquímico de España), Instituto Geológico y Minero de España, Madrid, In Spanish

    Google Scholar 

  73. Rodríguez-Martín JA, Lopéz Arias M, Grau Corbí JM (2006) Heavy metals contents in agricultural topsoils in the Ebro basin: application of the multivariate geoestatistical methods to study spatial variations. Environ Pollut 144:1001–1012

    Article  Google Scholar 

  74. Gil C, Ramos-Miras J, Roca-Pérez L, Boluda R (2010) Determination and assessment of mercury content in calcareous soils. Chemosphere 78(4):409–415

    Article  CAS  Google Scholar 

  75. Ramos-Miras JJ, Gil C, Roca-Perez L, Boluda R (2012) Content and evolution of mercury in greenhouse soils of Almeria, Spain. Acta Hortic 927:821–826

    Google Scholar 

  76. Grimalt JO, Ferrer M, MacPherson E (1999) The mine tailing accident in Aznalcollar. Sci Total Environ 242:3–11

    Article  CAS  Google Scholar 

  77. Llanos W (2011) Modelization of gaseous mercury emissions to the atmosphere in Almadén mining district (Ciudad Real province) (Modelización de las emisiones de mercurio gaseoso a la atmosfera en el distrito minero de almadén (provincia de Ciudad Real)). PhD Dissertation, University Complutense of Madrid, In Spanish

    Google Scholar 

  78. Castillo WO (2012) Mercury in soils of Nueva Concepción mine, Almadén mining district (Spain) (Mercurio en suelos del sector de la mina la Nueva Concepción, Distrito Minero de Almadén (España)). Dissertation, University Complutense of Madrid, In Spanish

    Google Scholar 

  79. Villaseca R (2012) Study of heavy metal pollution in Usagre mercury mine (Badajoz) (Estudio de la contaminación por metales pesados en el yacimiento de mercurio de Usagre (Badajoz)). Dissertation, University of Castilla-La Mancha, In Spanish

    Google Scholar 

  80. Esbrí JM, López-Berdonces MA, Fernández-Calderón S, Higueras P, Díez S (2014) Mercury atmospheric pollution around a Chlor-Alkali plant: an integrated analysis. Environ Sci Pollut Res. doi:10.1007/s11356-014-3305-x

    Google Scholar 

  81. Agencia de Residus de Catalunya (2014) NGR values for metals and metalloids and human health protection in Catalonia (Valores de los NGR para metales y metaloides y protección de la salud humana aplicables a Cataluña.), Available at GENCAT. http://www20.gencat.cat/portal/site/arc/menuitem.60fb2478680e61fd624a1d25b0c0e1a0/?vgnextoid=fd370431b17d6210 VgnVCM1000008d0c1e0aRCRD&vgnextchannel=fd370431b17d6210VgnVCM1000008d0c1e0aRCRD&vgnextfmt=default. Accessed 21 Mar 2014, In Spanish

  82. Environment Agency (2009) Soil guidance values for UK, Available at environment agency. http://www.environment-agency.gov.uk/research/planning/33714.aspx. Accessed 21 Mar 2014

  83. Alloway BJ (1995) Heavy metals in soils, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  84. Senesi GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39(2):343–377

    Article  CAS  Google Scholar 

  85. Bowen HJM (1979) Environmental chemistry of the elements. Academic, New York

    Google Scholar 

  86. Ordóñez A, Álvarez R, Charlesworth S, De Miguel E, Loredo J (2011) Risk assessment of soils contaminated by mercury mining, Northern Spain. J Environ Monit 13:128–136

    Article  Google Scholar 

  87. Biester H, Muller G, Scholer HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191–203

    Article  CAS  Google Scholar 

  88. Davies G, Ghabbour EA, Cherkasskiy A, Fataftah A (2001) Tight metal binding by solid phase peat and soil humic acids. In: Clapp CE, Hayes MHB, Senesi N, Bloom PR, Jardine PM (eds) Humic substances and chemical contaminants. Soil Science Society of America, Anaheim, pp 371–395

    Google Scholar 

  89. Bengtsson G, Picado F (2008) Mercury sorption to sediments: dependence on grain size, dissolved organic carbon, and suspended bacteria. Chemosphere 73:526–531

    Article  CAS  Google Scholar 

  90. Sahuquillo A, Rauret G, Bianchi M, Rehnert A, Muntau H (2003) Mercury determination in solid phases from application of the modified BCR-sequential extraction procedure: a valuable tool for assessing its mobility in sediments. Anal Bioanal Chem 375:578–583

    CAS  Google Scholar 

  91. Fernández-Martínez R, Rucandio I (2014) Total mercury, organic mercury and mercury fractionation in soil profiles from the Almadén mercury mine area. Environ Sci Process Impacts 16:333–340

    Article  Google Scholar 

  92. Fernández-Martínez R, Loredo J, Ordóñez A, Rucandio I (2014) Mercury availability by operationally-defined fractionation in granulometric distributions of soils and mine wastes from an abandoned Cinnabar Mine. Environ Sci Process Impacts 16(5):1069–1075

    Article  Google Scholar 

  93. Fernández-Martínez R, Rucandio I (2013) Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples. Ecotoxicol Environ Saf 97:196–203

    Article  Google Scholar 

  94. Carrasco-Gil S, Álvarez-Fernández A, Sobrino-Plata J, Millán R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadia J, Hernández LE (2011) Complexation of hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34(5):778–791

    Article  CAS  Google Scholar 

  95. Higueras P, Oyarzun R, Kotnik J, Esbrí JM, Martínez-Coronado A, Horvat M, López-Berdonces MA, Llanos W, Vaselli O, Nisi B, Mashyanov N, Ryzov V, Spiric Z, Panichev N, McCrindle R, Feng XB, Fu XW, Lillo J, Loredo J, García ME, Alfonso P, Villegas K, Palacios S, Oyarzún J, Maturana H, Contreras F, Adams M, Ribeiro-Guevara S, Niecenski LF, Giammanco S, Huremović J (2014) A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa, and China: separating fads from facts. Environ Geochem Health 36:713–734

    Google Scholar 

  96. Herrera EA (2013) Mercury in air and lichens (Evernia Prunastri) in La Nueva Concepción mine, Almadén mining district (Spain). (Mercurio en aire y líquenes (Evernia prunastri) en el sector de la mina La Nueva Concepción, distrito minero de Almadén (España)). Dissertation, University Complutense of Madrid. In Spanish

    Google Scholar 

  97. García-Sánchez A, Contreras F, Adams M, Santos F (2006) Atmospheric mercury emissions from polluted gold mining areas (Venezuela). Environ Geochem Health 28:529–540

    Article  Google Scholar 

  98. Higueras P, Llanos W, García ME, Millán R, Serrano C (2012) Mercury vapor emissions from the Ingenios in Potosí (Bolivia). J Geochem Explor 116–117:1–7

    Article  Google Scholar 

  99. Guerrero S (2012) Chemistry as a tool for historical research: identifying paths of historical mercury pollution in the Hispanic New World. Bull Hist Chem 37:61–70

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Higueras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Higueras, P. et al. (2014). Mercury Soil Pollution in Spain: A Review. In: Jiménez, E., Cabañas, B., Lefebvre, G. (eds) Environment, Energy and Climate Change I. The Handbook of Environmental Chemistry, vol 32. Springer, Cham. https://doi.org/10.1007/698_2014_280

Download citation

Publish with us

Policies and ethics