Polystyrene Wastes: Threat or Opportunity?

  • Cristina Gutiérrez
  • Juan C. de Haro
  • M. Teresa García
  • Ignacio Gracia
  • Antonio de Lucas
  • Juan F. RodríguezEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)


The recycling of polystyrene (PS) wastes could be considered even economically feasible if, apart from the intrinsic environmental benefits, the wastes are transformed into high-added value products with enhanced properties. In this work, the development of an integral recycling process for polystyrene wastes by means of a new and cost-effective alternative to traditional plastic recycling techniques has been proposed. The methodology consists of the selective dissolution of the plastic wastes with suitable natural solvents (terpene oils) to get a volume reduction without degradation of the polymer chains. The employment of a natural solvent for the treatment of polystyrene wastes transforms the process in an environmentally friendly technology. High pressure CO2 is proposed to perform the solvent removal in order to avoid the formation of undesirable by-products and to improve the quality of the recycled plastic, since it acts as a physical foaming agent. The use of CO2 is very attractive because it makes the polymer–solvent separation easier, improves the mass transfer into the highly swelled polymer bulk and allows the tuning of the final properties of the recovered PS. A controlled foaming of the polystyrene–solvent mixtures can be easily carried out at moderate temperatures and pressures by exploiting the advantages that provide the recycling with a natural solvent, obtaining completely free of solvent PS foams. Adjusting the working conditions, the structure of the foams produced can be tailored enhancing the initial properties of the PS wastes.


Polystyrene Recycling Supercritical CO2 Terpene oils 


  1. 1.
    Brydson JA (1999) The historical development of plastics materials. In: Brydson JA (ed) Plastics materials, 7th edn. Butterworth-Heinemann, Oxford, pp 1–18, Scholar
  2. 2.
    Council PP (n.d.) Polystyrene Packaging Council. Accessed March, 10 2014
  3. 3.
    Ghosh P (2001) Polymer science and technology: plastics, rubbers, blends and composites. Tata McGraw-Hill, New DelhiGoogle Scholar
  4. 4.
    Azapagic A, Emsley A, Hamerton I (2003) Polymers: the environment and sustainable development. Wiley, GuildfordCrossRefGoogle Scholar
  5. 5.
    Van Krevelen DW, Te Nijenhuis K (2009) Typology of polymers. In: Krevelen DWV, Nijenhuis KT (eds) Properties of polymers, 4th edn. Elsevier, Amsterdam, pp 7–47, Scholar
  6. 6.
    PlasticsEurope. Accessed March 7 2014
  7. 7.
    Borsoi C, Scienza LC, Zattera AJ (2013) Characterization of composites based on recycled expanded polystyrene reinforced with curaua fibers. J Appl Polym Sci 128(1):653–659. doi: 10.1002/app.38236 CrossRefGoogle Scholar
  8. 8.
    Zelenović Vasiljević T, Srdjević Z, Bajčetić R, Vojinović Miloradov M (2012) GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: A case study from Serbia. Environ Manage 49(2):445–458. doi: 10.1007/s00267-011-9792-3 CrossRefGoogle Scholar
  9. 9.
    Brunner S, Fomin P, Zhelondz D, Kargel C (2012) Investigation of algorithms for the reliable classification of fluorescently labeled plastics. In: 2012 I.E. international instrumentation and measurement technology conference, I2MTC 2012, Graz, pp 1659–1664. doi:10.1109/i2mtc.2012.6229451
  10. 10.
    Ávila AF, Duarte MV (2003) A mechanical analysis on recycled PET/HDPE composites. Polym Degrad Stab 80(2):373–382. doi: 10.1016/s0141-3910(03)00025-9 CrossRefGoogle Scholar
  11. 11.
    Carvalho T, Durão F, Ferreira C (2010) Separation of packaging plastics by froth flotation in a continuous pilot plant. Waste Manage (Oxford) 30(11):2209–2215. doi: 10.1016/j.wasman.2010.05.023 CrossRefGoogle Scholar
  12. 12.
    Inada K, Matsuda R, Fujiwara C, Nomura M, Tamon T, Nishihara I, Takao T, Fujita T (2001) Identification of plastics by infrared absorption using InGaAsP laser diode. Resour Conservat Recycl 33(2):131–146. doi: 10.1016/s0921-3449(01)00080-5 CrossRefGoogle Scholar
  13. 13.
    Martínez SS, Paniza JML, Ramírez MC, Ortega JG, García JG (2012) A sensor fusion-based classification system for thermoplastic recycling. In: 18th international conference on automation and computing, ICAC 2012, Loughborough, Leicestershire, pp 290–295Google Scholar
  14. 14.
    Anzano J, Lasheras RJ, Bonilla B, Casas J (2008) Classification of polymers by determining of C1:C2:CN:H:N:O ratios by laser-induced plasma spectroscopy (LIPS). Polym Test 27(6):705–710. doi: 10.1016/j.polymertesting.2008.05.012 CrossRefGoogle Scholar
  15. 15.
    Luijsterburg B, Goossens H (2013) Assessment of plastic packaging waste: material origin, methods, properties. Resour Conservat Recycl. doi:10.1016/j.resconrec.2013.10.010
  16. 16.
    Choi WZ, Yoo JM, Park EK (2006) Separation of individual plastics from mixtures by gravity separation processes. In: TMS fall extraction and processing division, Sohn International Symposium, San Diego, pp 459–468Google Scholar
  17. 17.
    Unnikrishnan VK, Choudhari KS, Kulkarni SD, Nayak R, Kartha VB, Santhosh C (2013) Analytical predictive capabilities of Laser Induced Breakdown Spectroscopy (LIBS) with Principal Component Analysis (PCA) for plastic classification. RSC Adv 3(48):25872–25880. doi: 10.1039/c3ra44946g CrossRefGoogle Scholar
  18. 18.
    Anzano J, Casanova ME, Bermúdez MS, Lasheras RJ (2006) Rapid characterization of plastics using laser-induced plasma spectroscopy (LIPS). Polym Test 25(5):623–627. doi: 10.1016/j.polymertesting.2006.04.005 CrossRefGoogle Scholar
  19. 19.
    Alter H (2005) The recovery of plastics from waste with reference to froth flotation. Resour Conservat Recycl 43(2):119–132. doi: 10.1016/j.resconrec.2004.05.003 CrossRefGoogle Scholar
  20. 20.
    Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: an overview of the recent works. Polym Degrad Stab 98(12):2801–2812. doi: 10.1016/j.polymdegradstab.2013.09.025 CrossRefGoogle Scholar
  21. 21.
    Scott G (2000) “Green” polymers. Polym Degrad Stab 68(1):1–7. doi: 10.1016/s0141-3910(99)00182-2 CrossRefGoogle Scholar
  22. 22.
    Al-Salem SM, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog Energy Combust Sci 36(1):103–129. doi: 10.1016/j.pecs.2009.09.001 CrossRefGoogle Scholar
  23. 23.
    Al Shrah M, Janajreh I (2013) Mechanical recycling of cross-link polyethylene: assessment of static and viscoplastic properties. In: 1st international renewable and sustainable energy conference, IRSEC 2013, Ouarzazate, pp 456–460. doi:10.1109/irsec.2013.6529674
  24. 24.
    De La Puente G, Sedran U (1998) Recycling polystyrene into fuels by means of FCC: performance of various acidic catalysts. Appl Catal Environ 19(3–4):305–311. doi: 10.1016/s0926-3373(98)00084-8 CrossRefGoogle Scholar
  25. 25.
    Wilk V, Hofbauer H (2013) Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel 107:787–799. doi: 10.1016/j.fuel.2013.01.068 CrossRefGoogle Scholar
  26. 26.
    Kaminsky W, Predel M, Sadiki A (2004) Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polym Degrad Stab 85 (3 Spec. iss.):1045–1050. doi:10.1016/j.polymdegradstab.2003.05.002
  27. 27.
    Teach WC, Kiessling GC (1960) Polystyrene. Reinhold Publishing Corporation, New YorkGoogle Scholar
  28. 28.
    Andrady AL (2003) Plastics and the environment. Wiley, New JerseyCrossRefGoogle Scholar
  29. 29.
    Brandrup J (1996) Recycling and recovery of plastics. Hanser Publishers, MunichGoogle Scholar
  30. 30.
    Ambrose CA, Hooper R, Potter AK, Singh MM (2002) Diversion from landfill: quality products from valuable plastics. Resour Conservat Recycl 36(4):309–318. doi: 10.1016/s0921-3449(02)00030-7 CrossRefGoogle Scholar
  31. 31.
    Vilaplana F, Ribes-Greus A, Karlsson S (2006) Degradation of recycled high-impact polystyrene. Simulation by reprocessing and thermo-oxidation. Polym Degrad Stab 91(9):2163–2170. doi: 10.1016/j.polymdegradstab.2006.01.007 CrossRefGoogle Scholar
  32. 32.
    Noguchi T, Lnagaki Y, Miyashita M, Watanabe H (1998) A new recycling system for expanded polystyrene using a natural solvent. Part 2. Development of a prototype production system. Packag Tech Sci 11(1):29–37CrossRefGoogle Scholar
  33. 33.
    Noguchi T, Miyashita M, Lnagaki Y, Watanabe H (1998) A new recycling system for expanded polystyrene using a natural solvent. Part 1. A new recycling technique. Packag Tech Sci 11(1):19–27Google Scholar
  34. 34.
    Shikata S, Watanabe T, Hattori K, Aoyama M, Miyakoshi T (2011) Dissolution of polystyrene into cyclic monoterpenes present in tree essential oils. J Mater Cycles Waste Manag 13(2):127–130. doi: 10.1007/s10163-011-0005-1 CrossRefGoogle Scholar
  35. 35.
    Gutiérrez C, García MT, Gracia I, De Lucas A, Rodríguez JF (2011) A practical approximation to design a process for polymers recycling by dissolution. Afinidad 68(553):181–188Google Scholar
  36. 36.
    Arandes JM, Ereña J, Azkoiti MJ, Olazar M, Bilbao J (2003) Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil. J Anal Appl Pyrolysis 70(2):747–760. doi: 10.1016/s0165-2370(03)00056-1 CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Mallapragada SK, Narasimhan B (2010) Dissolution of waste plastics in biodiesel. Polym Eng Sci 50(5):863–870. doi: 10.1002/pen.21598 CrossRefGoogle Scholar
  38. 38.
    Kodera Y, Ishihara Y, Kuroki T, Ozaki S (2005) Selected papers presented at the 3rd International Symposium on Feedstock Recycling of Plastics. In: Müller-Hagedorn M, Bockhorn H (eds) Solvo-cycle process: AIST’s new recycling process for used plastic foam using plastics-derived solvent, Karlshrue, pp 217–222Google Scholar
  39. 39.
    Karaduman A, Imşek EH, Çiçek B, Bilgesü AY (2002) Thermal degradation of polystyrene wastes in various solvents. J Anal Appl Pyrolysis 62(2):273–280. doi: 10.1016/s0165-2370(01)00125-5 CrossRefGoogle Scholar
  40. 40.
    Kim SS, Kim J, Jeon JK, Park YK, Park CJ (2013) Non-isothermal pyrolysis of the mixtures of waste automobile lubricating oil and polystyrene in a stirred batch reactor. Renew Energy 54:241–247. doi: 10.1016/j.renene.2012.08.001 CrossRefGoogle Scholar
  41. 41.
    Sovová H, Stateva RP, Galushko AA (2007) High-pressure equilibrium of menthol + CO2. J Supercrit Fluids 41(1):1–9CrossRefGoogle Scholar
  42. 42.
    Kerton F, Marriott R (2013) Alternative solvents for green chemistry, 2nd edn, RSC green chemistry. RSC publishing, CambridgeGoogle Scholar
  43. 43.
    Hattori K, Shikata S, Maekawa R, Aoyama M (2010) Dissolution of polystyrene into p-cymene and related substances in tree leaf oils. J Wood Sci 56(2):169–171. doi: 10.1007/s10086-009-1073-x CrossRefGoogle Scholar
  44. 44.
    Gutiérrez C, García MT, Gracia I, De Lucas A, Rodríguez JF (2013) The selective dissolution technique as initial step for polystyrene recycling. Waste Biomass Valorization 4(1):29–36CrossRefGoogle Scholar
  45. 45.
    Hattori K, Naito S, Yamauchi K, Nakatani H, Yoshida T, Saito S, Aoyama M, Miyakoshi T (2008) Solubilization of polystyrene into monoterpenes. Adv Polym Tech 27(1):35–39. doi: 10.1002/adv.20115 CrossRefGoogle Scholar
  46. 46.
    García MT, Duque G, Gracia I, De Lucas A, Rodríguez JF (2009) Recycling extruded polystyrene by dissolution with suitable solvents. J Mater Cycles Waste Manag 11(1):2–5. doi: 10.1007/s10163-008-0210-8 CrossRefGoogle Scholar
  47. 47.
    Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley, WeinheimCrossRefGoogle Scholar
  48. 48.
    Hansen CM (2000) Hansen solubility parameters: a user’s handbook. CRC, New YorkGoogle Scholar
  49. 49.
    Güner A (2004) The algorithmic calculations of solubility parameter for the determination of interactions in dextran/certain polar solvent systems. Eur Polym J 40(7):1587–1594. doi: 10.1016/j.eurpolymj.2003.10.030 CrossRefGoogle Scholar
  50. 50.
    García MT, Gracia I, Duque G, Ad L, Rodríguez JF (2009) Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manag (Oxford) 29(6):1814–1818. doi: 10.1016/j.wasman.2009.01.001 CrossRefGoogle Scholar
  51. 51.
    Subra P, Jestin P (2000) Screening design of experiment (DOE) applied to supercritical antisolvent process. Ind Eng Chem Res 39(11):4178–4184CrossRefGoogle Scholar
  52. 52.
    Lin IH, Liang PF, Tan CS (2010) Preparation of polystyrene/poly(methyl methacrylate) blends by compressed fluid antisolvent technique. J Supercrit Fluids 51(3):384–398. doi: 10.1016/j.supflu.2009.10.008 CrossRefGoogle Scholar
  53. 53.
    Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci (Oxford) 28(8):1223–1270. doi: 10.1016/s0079-6700(03)00045-5 CrossRefGoogle Scholar
  54. 54.
    Okubo M, Ahmad H (1995) Synthesis of temperature-sensitive submicron-size composite polymer particles. Colloid Polym Sci 273(9):817–821CrossRefGoogle Scholar
  55. 55.
    Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10(2):207–234. doi: 10.1039/a906486i CrossRefGoogle Scholar
  56. 56.
    Bogel-Łukasik E, Szudarska A, Bogel-Łukasik R, Nunes da Ponte M (2009) Vapour-liquid equilibrium for β-myrcene and carbon dioxide and/or hydrogen and the volume expansion of β-myrcene or limonene in CO2 at 323.15 K. Fluid Phase Equilib 282(1):25–30CrossRefGoogle Scholar
  57. 57.
    Reverchon E, Sesti Osseo L, Gorgoglione D (1994) Supercritical CO2 extraction of basil oil: characterization of products and process modeling. J Supercrit Fluids 7(3):185–190CrossRefGoogle Scholar
  58. 58.
    Varona S, Martin A, Cocero MJ, Gamse T (2008) Supercritical carbon dioxide fractionation of Lavandin essential oil: experiments and modeling. J Supercrit Fluids 45(2):181–188. doi: 10.1016/j.supflu.2007.07.010 CrossRefGoogle Scholar
  59. 59.
    Gutiérrez C, Rodríguez JF, Gracia I, de Lucas A, García MT (2013) High-pressure phase equilibria of Polystyrene dissolutions in Limonene in presence of CO2. J Supercrit Fluid 84:211–220. doi:
  60. 60.
    Gutiérrez C, Rodríguez JF, Gracia I, de Lucas A, García MT (2014) Preparation and characterization of polystyrene foams from limonene solutions. J Supercrit Fluid 88:92–104. doi:
  61. 61.
    Bao JB, Liu T, Zhao L, Hu GH, Miao X, Li X (2012) Oriented foaming of polystyrene with supercritical carbon dioxide for toughening. Polymer (United Kingdom). doi:10.1016/j.polymer.2012.10.011

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cristina Gutiérrez
    • 1
  • Juan C. de Haro
    • 1
  • M. Teresa García
    • 1
  • Ignacio Gracia
    • 1
  • Antonio de Lucas
    • 1
  • Juan F. Rodríguez
    • 2
    Email author
  1. 1.Department of Chemical Engineering, Faculty of Chemical Science and TechnologyUniversity of Castilla-La ManchaCiudad RealSpain
  2. 2.Faculty of Chemical Science and TechnologyInstitute of Chemical and Environmental Technology (ITQUIMA). University of Castilla-La ManchaCiudad RealSpain

Personalised recommendations