Skip to main content

Polystyrene Wastes: Threat or Opportunity?

  • Chapter
  • First Online:
Book cover Environment, Energy and Climate Change I

Abstract

The recycling of polystyrene (PS) wastes could be considered even economically feasible if, apart from the intrinsic environmental benefits, the wastes are transformed into high-added value products with enhanced properties. In this work, the development of an integral recycling process for polystyrene wastes by means of a new and cost-effective alternative to traditional plastic recycling techniques has been proposed. The methodology consists of the selective dissolution of the plastic wastes with suitable natural solvents (terpene oils) to get a volume reduction without degradation of the polymer chains. The employment of a natural solvent for the treatment of polystyrene wastes transforms the process in an environmentally friendly technology. High pressure CO2 is proposed to perform the solvent removal in order to avoid the formation of undesirable by-products and to improve the quality of the recycled plastic, since it acts as a physical foaming agent. The use of CO2 is very attractive because it makes the polymer–solvent separation easier, improves the mass transfer into the highly swelled polymer bulk and allows the tuning of the final properties of the recovered PS. A controlled foaming of the polystyrene–solvent mixtures can be easily carried out at moderate temperatures and pressures by exploiting the advantages that provide the recycling with a natural solvent, obtaining completely free of solvent PS foams. Adjusting the working conditions, the structure of the foams produced can be tailored enhancing the initial properties of the PS wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brydson JA (1999) The historical development of plastics materials. In: Brydson JA (ed) Plastics materials, 7th edn. Butterworth-Heinemann, Oxford, pp 1–18, http://dx.doi.org/10.1016/B978-075064132-6/50042-5

    Chapter  Google Scholar 

  2. Council PP (n.d.) Polystyrene Packaging Council. http://www.polystyrenepackaging.co.za/. Accessed March, 10 2014

  3. Ghosh P (2001) Polymer science and technology: plastics, rubbers, blends and composites. Tata McGraw-Hill, New Delhi

    Google Scholar 

  4. Azapagic A, Emsley A, Hamerton I (2003) Polymers: the environment and sustainable development. Wiley, Guildford

    Book  Google Scholar 

  5. Van Krevelen DW, Te Nijenhuis K (2009) Typology of polymers. In: Krevelen DWV, Nijenhuis KT (eds) Properties of polymers, 4th edn. Elsevier, Amsterdam, pp 7–47, http://dx.doi.org/10.1016/B978-0-08-054819-7.00002-9

    Chapter  Google Scholar 

  6. PlasticsEurope. http://www.plasticseurope.org/. Accessed March 7 2014

  7. Borsoi C, Scienza LC, Zattera AJ (2013) Characterization of composites based on recycled expanded polystyrene reinforced with curaua fibers. J Appl Polym Sci 128(1):653–659. doi:10.1002/app.38236

    Article  CAS  Google Scholar 

  8. Zelenović Vasiljević T, Srdjević Z, Bajčetić R, Vojinović Miloradov M (2012) GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: A case study from Serbia. Environ Manage 49(2):445–458. doi:10.1007/s00267-011-9792-3

    Article  Google Scholar 

  9. Brunner S, Fomin P, Zhelondz D, Kargel C (2012) Investigation of algorithms for the reliable classification of fluorescently labeled plastics. In: 2012 I.E. international instrumentation and measurement technology conference, I2MTC 2012, Graz, pp 1659–1664. doi:10.1109/i2mtc.2012.6229451

  10. Ávila AF, Duarte MV (2003) A mechanical analysis on recycled PET/HDPE composites. Polym Degrad Stab 80(2):373–382. doi:10.1016/s0141-3910(03)00025-9

    Article  Google Scholar 

  11. Carvalho T, Durão F, Ferreira C (2010) Separation of packaging plastics by froth flotation in a continuous pilot plant. Waste Manage (Oxford) 30(11):2209–2215. doi:10.1016/j.wasman.2010.05.023

    Article  CAS  Google Scholar 

  12. Inada K, Matsuda R, Fujiwara C, Nomura M, Tamon T, Nishihara I, Takao T, Fujita T (2001) Identification of plastics by infrared absorption using InGaAsP laser diode. Resour Conservat Recycl 33(2):131–146. doi:10.1016/s0921-3449(01)00080-5

    Article  Google Scholar 

  13. Martínez SS, Paniza JML, Ramírez MC, Ortega JG, García JG (2012) A sensor fusion-based classification system for thermoplastic recycling. In: 18th international conference on automation and computing, ICAC 2012, Loughborough, Leicestershire, pp 290–295

    Google Scholar 

  14. Anzano J, Lasheras RJ, Bonilla B, Casas J (2008) Classification of polymers by determining of C1:C2:CN:H:N:O ratios by laser-induced plasma spectroscopy (LIPS). Polym Test 27(6):705–710. doi:10.1016/j.polymertesting.2008.05.012

    Article  CAS  Google Scholar 

  15. Luijsterburg B, Goossens H (2013) Assessment of plastic packaging waste: material origin, methods, properties. Resour Conservat Recycl. doi:10.1016/j.resconrec.2013.10.010

  16. Choi WZ, Yoo JM, Park EK (2006) Separation of individual plastics from mixtures by gravity separation processes. In: TMS fall extraction and processing division, Sohn International Symposium, San Diego, pp 459–468

    Google Scholar 

  17. Unnikrishnan VK, Choudhari KS, Kulkarni SD, Nayak R, Kartha VB, Santhosh C (2013) Analytical predictive capabilities of Laser Induced Breakdown Spectroscopy (LIBS) with Principal Component Analysis (PCA) for plastic classification. RSC Adv 3(48):25872–25880. doi:10.1039/c3ra44946g

    Article  CAS  Google Scholar 

  18. Anzano J, Casanova ME, Bermúdez MS, Lasheras RJ (2006) Rapid characterization of plastics using laser-induced plasma spectroscopy (LIPS). Polym Test 25(5):623–627. doi:10.1016/j.polymertesting.2006.04.005

    Article  CAS  Google Scholar 

  19. Alter H (2005) The recovery of plastics from waste with reference to froth flotation. Resour Conservat Recycl 43(2):119–132. doi:10.1016/j.resconrec.2004.05.003

    Article  Google Scholar 

  20. Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: an overview of the recent works. Polym Degrad Stab 98(12):2801–2812. doi:10.1016/j.polymdegradstab.2013.09.025

    Article  CAS  Google Scholar 

  21. Scott G (2000) “Green” polymers. Polym Degrad Stab 68(1):1–7. doi:10.1016/s0141-3910(99)00182-2

    Article  CAS  Google Scholar 

  22. Al-Salem SM, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog Energy Combust Sci 36(1):103–129. doi:10.1016/j.pecs.2009.09.001

    Article  CAS  Google Scholar 

  23. Al Shrah M, Janajreh I (2013) Mechanical recycling of cross-link polyethylene: assessment of static and viscoplastic properties. In: 1st international renewable and sustainable energy conference, IRSEC 2013, Ouarzazate, pp 456–460. doi:10.1109/irsec.2013.6529674

  24. De La Puente G, Sedran U (1998) Recycling polystyrene into fuels by means of FCC: performance of various acidic catalysts. Appl Catal Environ 19(3–4):305–311. doi:10.1016/s0926-3373(98)00084-8

    Article  Google Scholar 

  25. Wilk V, Hofbauer H (2013) Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel 107:787–799. doi:10.1016/j.fuel.2013.01.068

    Article  CAS  Google Scholar 

  26. Kaminsky W, Predel M, Sadiki A (2004) Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polym Degrad Stab 85 (3 Spec. iss.):1045–1050. doi:10.1016/j.polymdegradstab.2003.05.002

  27. Teach WC, Kiessling GC (1960) Polystyrene. Reinhold Publishing Corporation, New York

    Google Scholar 

  28. Andrady AL (2003) Plastics and the environment. Wiley, New Jersey

    Book  Google Scholar 

  29. Brandrup J (1996) Recycling and recovery of plastics. Hanser Publishers, Munich

    Google Scholar 

  30. Ambrose CA, Hooper R, Potter AK, Singh MM (2002) Diversion from landfill: quality products from valuable plastics. Resour Conservat Recycl 36(4):309–318. doi:10.1016/s0921-3449(02)00030-7

    Article  Google Scholar 

  31. Vilaplana F, Ribes-Greus A, Karlsson S (2006) Degradation of recycled high-impact polystyrene. Simulation by reprocessing and thermo-oxidation. Polym Degrad Stab 91(9):2163–2170. doi:10.1016/j.polymdegradstab.2006.01.007

    Article  CAS  Google Scholar 

  32. Noguchi T, Lnagaki Y, Miyashita M, Watanabe H (1998) A new recycling system for expanded polystyrene using a natural solvent. Part 2. Development of a prototype production system. Packag Tech Sci 11(1):29–37

    Article  CAS  Google Scholar 

  33. Noguchi T, Miyashita M, Lnagaki Y, Watanabe H (1998) A new recycling system for expanded polystyrene using a natural solvent. Part 1. A new recycling technique. Packag Tech Sci 11(1):19–27

    Google Scholar 

  34. Shikata S, Watanabe T, Hattori K, Aoyama M, Miyakoshi T (2011) Dissolution of polystyrene into cyclic monoterpenes present in tree essential oils. J Mater Cycles Waste Manag 13(2):127–130. doi:10.1007/s10163-011-0005-1

    Article  CAS  Google Scholar 

  35. Gutiérrez C, García MT, Gracia I, De Lucas A, Rodríguez JF (2011) A practical approximation to design a process for polymers recycling by dissolution. Afinidad 68(553):181–188

    Google Scholar 

  36. Arandes JM, Ereña J, Azkoiti MJ, Olazar M, Bilbao J (2003) Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil. J Anal Appl Pyrolysis 70(2):747–760. doi:10.1016/s0165-2370(03)00056-1

    Article  CAS  Google Scholar 

  37. Zhang Y, Mallapragada SK, Narasimhan B (2010) Dissolution of waste plastics in biodiesel. Polym Eng Sci 50(5):863–870. doi:10.1002/pen.21598

    Article  CAS  Google Scholar 

  38. Kodera Y, Ishihara Y, Kuroki T, Ozaki S (2005) Selected papers presented at the 3rd International Symposium on Feedstock Recycling of Plastics. In: Müller-Hagedorn M, Bockhorn H (eds) Solvo-cycle process: AIST’s new recycling process for used plastic foam using plastics-derived solvent, Karlshrue, pp 217–222

    Google Scholar 

  39. Karaduman A, Imşek EH, Çiçek B, Bilgesü AY (2002) Thermal degradation of polystyrene wastes in various solvents. J Anal Appl Pyrolysis 62(2):273–280. doi:10.1016/s0165-2370(01)00125-5

    Article  CAS  Google Scholar 

  40. Kim SS, Kim J, Jeon JK, Park YK, Park CJ (2013) Non-isothermal pyrolysis of the mixtures of waste automobile lubricating oil and polystyrene in a stirred batch reactor. Renew Energy 54:241–247. doi:10.1016/j.renene.2012.08.001

    Article  CAS  Google Scholar 

  41. Sovová H, Stateva RP, Galushko AA (2007) High-pressure equilibrium of menthol + CO2. J Supercrit Fluids 41(1):1–9

    Article  Google Scholar 

  42. Kerton F, Marriott R (2013) Alternative solvents for green chemistry, 2nd edn, RSC green chemistry. RSC publishing, Cambridge

    Google Scholar 

  43. Hattori K, Shikata S, Maekawa R, Aoyama M (2010) Dissolution of polystyrene into p-cymene and related substances in tree leaf oils. J Wood Sci 56(2):169–171. doi:10.1007/s10086-009-1073-x

    Article  CAS  Google Scholar 

  44. Gutiérrez C, García MT, Gracia I, De Lucas A, Rodríguez JF (2013) The selective dissolution technique as initial step for polystyrene recycling. Waste Biomass Valorization 4(1):29–36

    Article  Google Scholar 

  45. Hattori K, Naito S, Yamauchi K, Nakatani H, Yoshida T, Saito S, Aoyama M, Miyakoshi T (2008) Solubilization of polystyrene into monoterpenes. Adv Polym Tech 27(1):35–39. doi:10.1002/adv.20115

    Article  CAS  Google Scholar 

  46. García MT, Duque G, Gracia I, De Lucas A, Rodríguez JF (2009) Recycling extruded polystyrene by dissolution with suitable solvents. J Mater Cycles Waste Manag 11(1):2–5. doi:10.1007/s10163-008-0210-8

    Article  Google Scholar 

  47. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley, Weinheim

    Book  Google Scholar 

  48. Hansen CM (2000) Hansen solubility parameters: a user’s handbook. CRC, New York

    Google Scholar 

  49. Güner A (2004) The algorithmic calculations of solubility parameter for the determination of interactions in dextran/certain polar solvent systems. Eur Polym J 40(7):1587–1594. doi:10.1016/j.eurpolymj.2003.10.030

    Article  Google Scholar 

  50. García MT, Gracia I, Duque G, Ad L, Rodríguez JF (2009) Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manag (Oxford) 29(6):1814–1818. doi:10.1016/j.wasman.2009.01.001

    Article  Google Scholar 

  51. Subra P, Jestin P (2000) Screening design of experiment (DOE) applied to supercritical antisolvent process. Ind Eng Chem Res 39(11):4178–4184

    Article  CAS  Google Scholar 

  52. Lin IH, Liang PF, Tan CS (2010) Preparation of polystyrene/poly(methyl methacrylate) blends by compressed fluid antisolvent technique. J Supercrit Fluids 51(3):384–398. doi:10.1016/j.supflu.2009.10.008

    Article  CAS  Google Scholar 

  53. Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci (Oxford) 28(8):1223–1270. doi:10.1016/s0079-6700(03)00045-5

    Article  CAS  Google Scholar 

  54. Okubo M, Ahmad H (1995) Synthesis of temperature-sensitive submicron-size composite polymer particles. Colloid Polym Sci 273(9):817–821

    Article  CAS  Google Scholar 

  55. Cooper AI (2000) Polymer synthesis and processing using supercritical carbon dioxide. J Mater Chem 10(2):207–234. doi:10.1039/a906486i

    Article  CAS  Google Scholar 

  56. Bogel-Łukasik E, Szudarska A, Bogel-Łukasik R, Nunes da Ponte M (2009) Vapour-liquid equilibrium for β-myrcene and carbon dioxide and/or hydrogen and the volume expansion of β-myrcene or limonene in CO2 at 323.15 K. Fluid Phase Equilib 282(1):25–30

    Article  Google Scholar 

  57. Reverchon E, Sesti Osseo L, Gorgoglione D (1994) Supercritical CO2 extraction of basil oil: characterization of products and process modeling. J Supercrit Fluids 7(3):185–190

    Article  CAS  Google Scholar 

  58. Varona S, Martin A, Cocero MJ, Gamse T (2008) Supercritical carbon dioxide fractionation of Lavandin essential oil: experiments and modeling. J Supercrit Fluids 45(2):181–188. doi:10.1016/j.supflu.2007.07.010

    Article  CAS  Google Scholar 

  59. Gutiérrez C, Rodríguez JF, Gracia I, de Lucas A, García MT (2013) High-pressure phase equilibria of Polystyrene dissolutions in Limonene in presence of CO2. J Supercrit Fluid 84:211–220. doi:http://dx.doi.org/10.1016/j.supflu.2013.08.017

  60. Gutiérrez C, Rodríguez JF, Gracia I, de Lucas A, García MT (2014) Preparation and characterization of polystyrene foams from limonene solutions. J Supercrit Fluid 88:92–104. doi:http://dx.doi.org/10.1016/j.supflu.2014.02.002

  61. Bao JB, Liu T, Zhao L, Hu GH, Miao X, Li X (2012) Oriented foaming of polystyrene with supercritical carbon dioxide for toughening. Polymer (United Kingdom). doi:10.1016/j.polymer.2012.10.011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gutiérrez, C., de Haro, J.C., García, M.T., Gracia, I., de Lucas, A., Rodríguez, J.F. (2014). Polystyrene Wastes: Threat or Opportunity?. In: Jiménez, E., Cabañas, B., Lefebvre, G. (eds) Environment, Energy and Climate Change I. The Handbook of Environmental Chemistry, vol 32. Springer, Cham. https://doi.org/10.1007/698_2014_279

Download citation

Publish with us

Policies and ethics