Pb–Zn–Cd–As Pollution in Soils Affected by Mining Activities in Central and Southern Spain: A Scattered Legacy Posing Potential Environmental and Health Concerns

  • Javier LilloEmail author
  • Roberto Oyarzun
  • José María Esbrí
  • Mari Luz García-Lorenzo
  • Pablo Higueras
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)


In this chapter, published geochemical data for soils from several Pb–Zn mine sites and districts from Spain are reviewed. Although most of the mines have closed down, a legacy of highly polluted soils still remains throughout the sites constituting a potential hazard for the environment and human health. The fate of the studied metals and metalloids in these soils is mainly controlled by factors such as mining methods, concentration and metallurgical operations, mineralogy of the ore, gangue and host rock, fracturing of the host rocks, physiography, climate, and soil types (pedogenic evolution). It can be concluded that the most polluted soils (identified on the basis of an enrichment factor) are those of the Sierra Minera (La Unión District – SE Spain), at more than 488 (Pb), 163 (Zn), 99 (Cd), and 98 (As) times the background values from non-contaminated soils. Pb is usually related to As, which in turn is bound to Fe oxides and oxyhydroxides. Metal bearing jarosite and other soluble phases also play a relevant role in the studied soil–water systems, because these minerals are dissolved during intense rainy events, thus resulting in high rates of metal leaching and mobilization by runoff.


Arsenic Environmental geochemistry Iberian Peninsula Metals Mine sites Soils 





Atomic fluorescence spectroscopy


Acid mine drainage


Below detection limit


Energy dispersive X-ray fluorescence


Electrothermal atomization atomic absorption spectrometry


Flame atomic absorption spectrometry


Inductively coupled plasma atomic emission spectroscopy


Inductively coupled plasma mass spectrometry


Instrumental neutron activation analysis


Iberian Pyrite Belt


Maximum contaminant levels


First quartile


Third quartile


Relative enrichment factor


Residential or parkland



The study presented in this chapter was partly funded by the Spanish Ministry of Economy and Competitiveness (Project CTM2012-33918).


  1. 1.
    Palero FJ, Both RA, Arribas A, Boyce AJ, Mangas J, Martin-Izard A (2003) Geology and metallogenic evolution of the polymetallic deposits of the Alcudia Valley Mineral Field, eastern Sierra Morena, Spain. Econ Geol 98:577–605Google Scholar
  2. 2.
    Higueras P, Oyarzun R, Iraizoz JM, Lorenzo S, Esbrí JM, Martínez Coronado A (2014) Low-cost geochemical surveys for environmental studies in developing countries: testing a field portable XRF instrument under quasi-realistic conditions. J Geochem Explor 113:3–12CrossRefGoogle Scholar
  3. 3.
    Oyarzun R, Fernández Barrenechea J, Esbrí JM, Higueras P, Lillo J, Martínez Coronado A, López García JA, López Andrés S (2010) Geoquímica Ambiental en San Quintín. Grupo Minero San Quintín (Ciudad Real): Sitio docente de entrenamiento activo para evaluaciones ambientales (Environmental Geochemistry in San Quintín. San Quintín Mining Group,Ciudad Real: learning site for training in environmental assessments). Accessed 12 Jun 2014
  4. 4.
    Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J Environ Manage 90:1106–1116CrossRefGoogle Scholar
  5. 5.
    Lillo J (2002) Hydrothermal alteration in the Linares-La Carolina Ba-Pb-Zn-Cu-(Ag) vein district, Spain: mineralogical data from El Cobre vein. T I Min Metall B 111:114–118Google Scholar
  6. 6.
    Martínez J, Llamas JF, De Miguel E, Rey J, Hidalgo MC (2008) Soil contamination from urban and industrial activity: example of the mining district of Linares (southern Spain). Environ Geol 54:669–677CrossRefGoogle Scholar
  7. 7.
    Martínez J, Llamas J, De Miguel E, Rey J, Hidalgo MC (2007) Determination of geochemical back ground in a metal mining site: example of the mining district of Linares (south Spain). J Geochem Explor 94:19–29CrossRefGoogle Scholar
  8. 8.
    Martínez López J, Llamas Borrajo J, De Miguel GE, Rey Arrans J, Hidalgo Estévez MC, Sáez Castillo AJ (2008) Multivariate analysis of contamination in the mining district of Linares (Jaén, Spain). Appl Geochem 23:2324–2336CrossRefGoogle Scholar
  9. 9.
    Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodovar GR, Pascual E, Sáez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner Deposita 33:2–30CrossRefGoogle Scholar
  10. 10.
    Chopin EIB, Alloway BJ (2007) Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain. Sci Total Environ 373:488–500CrossRefGoogle Scholar
  11. 11.
    López M, González I, Romero A (2008) Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, SW Spain). Environ Geol 54:805–818CrossRefGoogle Scholar
  12. 12.
    Fernández-Caliani JC, Barba-Brioso C, González I, Galán E (2009) Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Poll 200:211–226CrossRefGoogle Scholar
  13. 13.
    González I, Galán E, Romero A (2011) Assessing soil quality in areas affected by sulfide mining. Application to soils in the Iberian Pyrite Belt (SW Spain). Minerals 1:73–108CrossRefGoogle Scholar
  14. 14.
    Villaseca C, López-García JA, Barbero L (2005) Estudio de la composición isotópica (Pb-S-O) de las mineralizaciones Pb–Zn de Mazarambroz (Banda Milonítica de Toledo) (Study of the isotopic composition (Pb-S-O) of the Mazarambroz (Toledo Mylonitic Band) mineralization). Geogaceta 38:271–274Google Scholar
  15. 15.
    López-García JA, Villaseca C, Barbero L (2003) Estudio preliminar de las mineralizaciones de Pb-Zn de Mazarambroz, Banda Milonítica de Toledo (Preliminary study of the Pb-Zn mineralization in Mazarambroz (Toledo Mylonitic Band)). Boletín de la Sociedad Española de Mineralogía 26-A:171–172Google Scholar
  16. 16.
    González-Corrochano B, Esbrí JM, Alonso-Azcárate J, Martínez-Coronado A, Jurado V, Higueras P (2014) Environmental geochemistry of a highly polluted area: the La Union Pb-Zn mine (Castilla-La Mancha region, Spain). Dig J Geochem Explor. doi: 10.1016/j.gexplo.2014.02.014 Google Scholar
  17. 17.
    Oyarzun R, Lillo J, López-García JA, Esbrí JM, Cubas P, Llanos W, Higueras P (2011) The Mazarrón Pb-(Ag)-Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: Geochemical data from mine wastes, soils, and stream sediments. J Geochem Explor 109:113–124CrossRefGoogle Scholar
  18. 18.
    López-García JA, Oyarzun R, López-Andrés S, Manteca Martínez JI (2011) Scientific, educational, and environmental considerations regarding mine sites and geoheritage: a perspective from SE Spain. Geoheritage 3:267–275CrossRefGoogle Scholar
  19. 19.
    Oyarzun R, Manteca-Martínez JI, López-García JA, Carmona C (2013) An account of the events that led to full bay infilling with sulfide tailings at Portman (Spain), and the search for “black swans” in a potential land reclamation scenario. Sci Total Environ 454–455:245–249CrossRefGoogle Scholar
  20. 20.
    Robles-Arenas VM, Rodríguez R, García C, Manteca JI, Candela L (2006) Sulphide-mining impacts in the physical environment: Sierra de Cartagena-La Unión (SE Spain) case study. Environ Geol 51:47–64CrossRefGoogle Scholar
  21. 21.
    Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193CrossRefGoogle Scholar
  22. 22.
    García-Lorenzo ML, Pérez-Sirvent C, Martínez-Sánchez MJ, Molina-Ruiz J (2012) Trace elements contamination in an abandoned mining site in a semiarid zone. J Geochem Explor 13:23–35CrossRefGoogle Scholar
  23. 23.
    Arribas A Jr, Cunningham CG, Rytuba JJ, Rye RO, Kelly WC, Podwysocki MH, McKee EH, Tosdal RM (1995) Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Econ Geol 90:795–822CrossRefGoogle Scholar
  24. 24.
    Oyarzun R, Cubas P, Higueras P, Lillo J, Llanos W (2009) Environmental assessment of the arsenic-rich, Rodalquilar gold-(copper-lead-zinc) mining district, SE Spain: data from soils and vegetation. Environ Geol 58:761–777CrossRefGoogle Scholar
  25. 25.
    Urbano Vicente R (1998) Guía para la investigación de los recursos minerales en España (Guideline on the investigation of mineral resources in Spain). IGME, MadridGoogle Scholar
  26. 26.
    Callender E (2004) Heavy metals in the environment-historical trends. In: Lollar BS (ed) Treatise on Geochemistry 9. Environmental Geochemistry. Elsevier, Amsterdam, pp 67–105Google Scholar
  27. 27.
    Lin Y, Tiegeng L (1999) Sphalerite chemistry, Niujiaotang Cd-rich zinc deposit, Guizhou, Southwest China. Chin J Geochem 18:62–68CrossRefGoogle Scholar
  28. 28.
    Goldschmidt V (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc, March, pp 655–673. doi: 10.1039/JR9370000655 Google Scholar
  29. 29.
    Gill R (1996) Chemical fundamentals of geology. Chapman and Hall, LondonGoogle Scholar
  30. 30.
    Oyarzun R (1976) Alteración hidrotermal y distribución de Cu, Mo, Pb y Zn en el prospecto Kilómetro Catorce, El Salvador, III Región (Hydrothermal alteration and distribution of Cu, Mo, Pb and Zn in the prospect Kilómetro Catorce, El Salvador, III Region). In: Proceedings of the 1st Congreso Geológico Chileno, 2–7 August 1976. Santiago, Chile, 2, E125–E143Google Scholar
  31. 31.
    Blanchard R (1968) Interpretation of Leached Outcrops. Nevada Bureau of Mines Bulletin 66Google Scholar
  32. 32.
    Lázaro I, Cruz R, González I, Monroy M (1997) Electrochemical oxidation of arsenopyrite in acidic media. Int J Miner Process 50:3–75CrossRefGoogle Scholar
  33. 33.
    Morin G, Calas G (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements 2:97–101CrossRefGoogle Scholar
  34. 34.
    USEPA (2013). Drinking water contaminants. Water, United States Environmental Protection Agency. Accessed 10 Feb 2014.
  35. 35.
    Benjamin MM, Honeyman BD (2006) Trace Metals. In: Jacobson MC, Charlson RJ, Rodhe H, Orians GH (eds) Earth system science, International Geophysics Series 72. Elsevier, Amsterdam, pp 377–418Google Scholar
  36. 36.
    MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31CrossRefGoogle Scholar
  37. 37.
    CCME (1999) Canadian soil quality guidelines for the protection of environmental and human health. Canadian Environmental Guidelines, Canadian Council of Ministers of the Environment, Accessed 12 Jun 2014
  38. 38.
    Manceau A, Boisset MC, Sarret G, Hazemann JL, Mench M, Cambier P, Prost R (1996) Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Envir Sci Technol 30:1540–1552CrossRefGoogle Scholar
  39. 39.
    Roberts DR, Scheinost AC, Sparks DL (2002) Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques. Envir Sci Technol 36:1742–1750CrossRefGoogle Scholar
  40. 40.
    Oyarzun R, Lillo J, Higueras P, Oyarzún J, Maturana H (2004) Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: industrial (gold mining at El Indio-Tambo district) vs. geologic processes. J Geochem Explor 84:53–64CrossRefGoogle Scholar
  41. 41.
    Seaman JC, Bertsch PM, Strom RN (1997) Characterization of colloids mobilized from southeastern coastal plains sediments. Envi Sci Technol 31:2782–2790CrossRefGoogle Scholar
  42. 42.
    Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella MF, White AF (eds) Mineral-Water Interface Geochemistry. Reviews in Mineralogy, 23, Mineralogical Society of America, Washington DC, pp 177–260Google Scholar
  43. 43.
    Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Reviews in Economic Geology 6A, Society of Economic Geologists, Chelsea, Michigan, pp 161–182Google Scholar
  44. 44.
    Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  45. 45.
    Meng X, Korfiatis GP, Bang S, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111CrossRefGoogle Scholar
  46. 46.
    Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278CrossRefGoogle Scholar
  47. 47.
    Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Goldewijk KK, Vervurg PH (2013) Used planet: a global history. Proc Natl Acad Sci USA 110:7978–7985CrossRefGoogle Scholar
  48. 48.
    Hooke RLEB, Martín-Duque JF, Pedraza J (2012) Land transformation by humans: a review. GSA Today 22:4–10Google Scholar
  49. 49.
    USEPA (2012). Health. Six common pollutants, lead in air; United States Environmental Protection Agency, Accessed 10 Feb 2014
  50. 50.
    Landrigan PJ, Baker EL Jr, Feldman RG, Cox DH, Eden KV, Orenstein WA, Mather JA, Yankel AJ, Lindern IHV (1976) Increased lead absorption with anemia and slowed nerve conduction in children near a lead smelter. J Pediatr 89:904–910CrossRefGoogle Scholar
  51. 51.
    Sepúlveda V, Vega J, Delgado I (2000) Exposición severa a plomo ambiental en una población infantil de Antofagasta, Chile (Childhood environmental lead exposure in Antofagasta, Chile). Rev Med Chile 128:221–232Google Scholar
  52. 52.
    USEPA (2005) Toxicological review of zinc and compounds. United States Environmental Protection Agency, CAS No. 7440-66-6, Accessed 10 Feb 2014
  53. 53.
    WHO (2011) Cadmium in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization, WHO/SDE/WSH/ 03.04/80/Rev/1, Accessed 10 Feb 2014
  54. 54.
    Bissen M, Frimmel FH (2003) Arsenic – a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydroch Hydrob 31:9–18CrossRefGoogle Scholar
  55. 55.
    Edwards KJ, Schrenk MO, Hamers R, Bandfield JF (1998) Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment. Am Mineral 83:1444–1453Google Scholar
  56. 56.
    Nordstrom DK, Alpers CN (1999). Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) Reviews in economic geology, 6A, The environmental geochemistry of mineral deposits. Part A. Processes, methods and health issues. Society of Economic Geologists, Littleton, pp 133–160Google Scholar
  57. 57.
    Oyarzun R, Lillo J, Oyarzun J, Maturana H, Higueras P (2007) Mineral deposits and Cu-Zn-As dispersion-contamination in stream sediments from the semiarid Coquimbo Region, Chile. Environ Geol 53:283–294CrossRefGoogle Scholar
  58. 58.
    Nordstrom DK (2009) Acid rock drainage and climate change. J Geochem Explor 100:97–104CrossRefGoogle Scholar
  59. 59.
    Singh A, Nocerino J (2002) Robust estimation of mean and variance using environmental data sets with below detection limit observations. Chemometr Intell Lab 60:69–86CrossRefGoogle Scholar
  60. 60.
    Templ M, Filzmoser P, Reimann C (2008) Cluster analysis applied to regional geochemical data: problems and possibilities. App Geochem 23:2198–2213CrossRefGoogle Scholar
  61. 61.
    Limpert E, Stahel WA, Abbot M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352CrossRefGoogle Scholar
  62. 62.
    Jiménez-Ballesta R, Bueno PC, Rubí JAM, Gimenez RG (2010) Pedo-geochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla-La Mancha, Spain). Central Eur J Geosci 2:441–452CrossRefGoogle Scholar
  63. 63.
    Galán E, Fernández-Caliani JC, González I, Aparicio P, Romero A (2008) Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of Southwest Spain. J Geochem Explor 98:89–106CrossRefGoogle Scholar
  64. 64.
    Hidalgo Estévez MC, Benavente Herrera J, Rey Arrans J (1999) First results on the presence of metallic contaminants in waters after the abandonment of a sulphide mining district (Linares, Spain). In: Proceedings of the mine, water & environment for the 21st century, International Mine Water Association, SevillaGoogle Scholar
  65. 65.
    Sánchez España J, López Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. App Geochem 20:1320–1356CrossRefGoogle Scholar
  66. 66.
    Oyarzun R, Higueras P, Lillo J (2011) Minería Ambiental: Una Introducción a los Impactos y su Remediación (Environmental mining: an introduction to impacts and remediation techniques). Accessed 12 Jun 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Javier Lillo
    • 1
    • 2
    Email author
  • Roberto Oyarzun
    • 3
  • José María Esbrí
    • 4
  • Mari Luz García-Lorenzo
    • 5
  • Pablo Higueras
    • 4
  1. 1.Departamento de Biología, Geología, Física y Química Inorgánica, ESCETUniversidad Rey Juan CarlosMóstoles, MadridSpain
  2. 2.IMDEA Water Inst.Parque Científico Tecnológico de la Universidad de AlcaláMadridSpain
  3. 3.Departamento de Cristalografía y Mineralogía, Facultad de Ciencias GeológicasUniversidad ComplutenseMadridSpain
  4. 4.Instituto de Geología Aplicada-Área de Explotación de MinasUniversidad de Castilla-La ManchaAlmadén (Ciudad Real)Spain
  5. 5.Departamento de Petrología y Geoquímica, Facultad de Ciencias GeológicasUniversidad ComplutenseMadridSpain

Personalised recommendations