Advertisement

Occurrence of PCPs in Natural Waters from Europe

  • Shivani Tanwar
  • Marina Di Carro
  • Carmela Ianni
  • Emanuele MagiEmail author
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 36)

Abstract

In the framework of the study of emerging pollutants in the aquatic environment, personal care products (PCPs) play a relevant role as they are used in everyday life. They are continuously introduced into the natural water compartment, mainly through treated and untreated sewage but also via different pathways. This chapter describes the “state of the art” of the distribution and impact of PCPs on European natural waters (rivers, lakes, groundwater, drinking water, etc.). An extensive review of the recent literature has been carried out, gathering together the most relevant studies and presenting the results in five sections: fragrances, UV filters, detergents, preservatives, and repellents. In each section, data on the main molecules employed in PCP formulations are reported and compared. The physicochemical properties of many PCP compounds are summarized in the respective tables along with an additional table listing the measured concentrations of all PCPs detected in waters all over Europe.

Keywords

Environmental analysis European water monitoring Natural water Personal care products 

References

  1. 1.
    Sumner NR, Guitart C, Fuentes G, Readman JW (2010) Inputs and distributions of synthetic musk fragrances in an estuarine and coastal environment; a case study. Environ Pollut 158(1):215–222. doi: 10.1016/j.envpol.2009.07.018 Google Scholar
  2. 2.
    Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp 107:907–938. doi: 10.2307/3434573 Google Scholar
  3. 3.
    Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303. doi: 10.1016/j.envpol.2011.12.034 Google Scholar
  4. 4.
    Ternes TA, Joss A, Siegrist H (2004) Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38(20):392A–399A. doi: 10.1021/Es040639t Google Scholar
  5. 5.
    European Commission, JRC (2012) Technical background draft report_1st AHWG meeting. http://susproc.jrc.ec.europa.eu/soaps_and_shampoos/stakeholders.html
  6. 6.
    Leonard C (2010) State of industry. Global Cosmetics Industry. http://www.gcimagazine.com/
  7. 7.
    Łopaciuk A, Łoboda M (2013) Global beauty industry trends in the 21st century. Management, Knowledge and Learning International Conference, 19–21 June, Zadar, CroatiaGoogle Scholar
  8. 8.
    Barbalova I (2011) Global beauty and personal care: the year in review and winning strategies for the future. In-cosmetics. Milan. http://www.in-cosmetics.com/RXUK/RXUK InCosmetics/documents/IC11 EuromonitorInt GlobalBeautyAndPersonalCare
  9. 9.
    European Parliament and of the Council (2006) Directive 2006/118/EC on the protection of groundwater against pollution and deteriorationGoogle Scholar
  10. 10.
    Buchberger WW (2011) Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J Chromatogr A 1218(4):603–618. doi: 10.1016/j.chroma.2010.10.040 Google Scholar
  11. 11.
    Fooken C, Gihr R, Seel P (1999) In Orientierende Messungen gefährlicher Stoffe—Landesweite Untersuchungen auf or- ganische Spurenverunreinigungen in hessischen Fließ- gewässern, Abwässern und Klärschlämmen, 1991–1998. Ergänzender Bericht zu 1997–1998; Hessisches Landesamt für Umwelt: Wiesbaden, Germany, pp 40–43Google Scholar
  12. 12.
    Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82(11):1518–1532. doi: 10.1016/j.chemosphere.2010.11.018 Google Scholar
  13. 13.
    Roosens L, Covaci A, Neels H (2007) Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere 69(10):1540–1547. doi: 10.1016/J.Chemosphere.2007.05.072 Google Scholar
  14. 14.
    Balk F, Ford RA (1999) Environmental risk assessment for the polycyclic musks, AHTN and HHCB. II. Effect assessment and risk characterisation. Toxicol Lett 111(1–2):81–94. doi: 10.1016/S0378-4274(99)00170-8 Google Scholar
  15. 15.
    Schramm KW, Kaune A, Beck B, Thumm W, Behechti A, Kettrup A, Nickolova P (1996) Acute toxicities of five nitromusk compounds in Daphnia, algae and photoluminescent bacteria. Water Res 30(10):2247–2250. doi: 10.1016/0043-1354(96)00101-7 Google Scholar
  16. 16.
    Winkler M, Kopf G, Hauptvogel C, Neu T (1998) Fate of artificial musk fragrances associated with suspended particulate matter (SPM) from the River Elbe (Germany) in comparison to other organic contaminants. Chemosphere 37(6):1139–1156. doi: 10.1016/S0045-6535(98)00110-6 Google Scholar
  17. 17.
    Geyer HJ, Rimkus G, Wolf M, Attar A, Steinberg C, Kettrup A (1994) Synthetische Nitromoschus-Duftstoffe und Bromocyclen - Neue Umweltchemikalien in Fischen und Muscheln bzw. Muttermilch und Humanfett. UWSF - Z Umweltchem Ökotox 6(1):9–17Google Scholar
  18. 18.
    Gatermann R, Huhnerfuss H, Rimkus G, Wolf M, Franke S (1995) The distribution of nitrobenzene and other nitroaromatic compounds in the north-sea. Mar Pollut Bull 30(3):221–227. doi: 10.1016/0025-326x(94)00161-2 Google Scholar
  19. 19.
    Rimkus GG, Wolf M (1995) Nitro musk fragrances in biota from freshwater and marine environment. Chemosphere 30(4):641–651. doi: 10.1016/0045-6535(94)00430-3 Google Scholar
  20. 20.
    Gautschi M, Bajgrowicz JA, Kraft P (2001) Fragrance chemistry - milestones and perspectives. Chimia 55(5):379–387Google Scholar
  21. 21.
    SRC, Syracuse Research Corporation (1996) Programma’s voor de voorspelling van logKow (versie 1.53), water oplosbaarheid en biodegradatie (versie 3.6). (Programmes for the prediction of logKow (version 1.53), water solubility and biodegradation (version 3.6)Google Scholar
  22. 22.
    Yamagishi T, Miyazaki T, Horii S, Kaneko S (1981) Identification of musk xylene and musk ketone in freshwater fish collected from the Tama River, Tokyo. Bull Environ Contam Toxicol 26(5):656–662. doi: 10.1007/BF01622152 Google Scholar
  23. 23.
    Yamagishi T, Miyazaki T, Horii S, Akiyama K (1983) Synthetic musk residues in biota and water from Tama River and Tokyo Bay (Japan). Arch Environ Contam Toxicol 12(1):83–89. doi: 10.1007/BF01055006 Google Scholar
  24. 24.
    Eschke HD, Traud J, Dibowski HJ (1994) Untersuchungen zum Vorkommen polycyclischer Moschus-Duftstoffe in verschiedenen Umweltkompartimenten. UWSF - Z Umweltchem Ökotox 6(4):183–189. doi: 10.1007/bf03166352 Google Scholar
  25. 25.
    Eschke HD, Dibowski HJ, Traud J (1995) Untersuchungen zum Vorkommen polycyclischer Moschus-Duftstoffe in verschiedenen Umweltkompartimenten. UWSF - Z Umweltchem Ökotox 7(3):131–138. doi: 10.1007/bf02939550 Google Scholar
  26. 26.
    Lagois U (1996) Vorkommen von synthetischen Nitromoschus- verbindungen in Gewässern. GWF Gas Wasserfach: Wasser- Abwasser 137:154–155Google Scholar
  27. 27.
    Bester K, Huhnerfuss H, Lange W, Rimkus GG, Theobald N (1998) Results of non target screening of lipophilic organic pollutants in the German bight II: polycyclic musk fragrances. Water Res 32(6):1857–1863. doi: 10.1016/S0043-1354(97)00424-7 Google Scholar
  28. 28.
    Heberer T, Gramer S, Stan HJ (1999) Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part III: determination of synthetic musks in Berlin surface water applying solid-phase microextraction (SPME) and gas chromatography–mass spectrometry (GC-MS). Acta Hydroch Hydrob 27(3):150–156. doi: 10.1002/(Sici)1521-401x(199905)27:3<150::Aid-Aheh150>3.0.Co;2-H Google Scholar
  29. 29.
    Rimkus GG (1999) Polycyclic musk fragrances in the aquatic environment. Toxicol Lett 111(1–2):37–56. doi: 10.1016/S0378-4274(99)00191-5 Google Scholar
  30. 30.
    Rimkus GG, Gatermann R, Huhnerfuss H (1999) Musk xylene and musk ketone amino metabolites in the aquatic environment. Toxicol Lett 111(1–2):5–15. doi: 10.1016/S0378-4274(99)00190-3 Google Scholar
  31. 31.
    Fromme H, Otto T, Pilz K (2001) Polycyclic musk fragrances in different environmental compartments in Berlin (Germany). Water Res 35(1):121–128. doi: 10.1016/S0043-1354(00)00233-5 Google Scholar
  32. 32.
    Dsikowitzky L, Schwarzbauer J, Littke R (2002) Distribution of polycyclic musks in water and particulate matter of the Lippe River (Germany). Org Geochem 33(12):1747–1758. doi: 10.1016/S0146-6380(02)00115-8 Google Scholar
  33. 33.
    Bester K, Huffmeyer N, Schaub E, Klasmeier J (2008) Surface water concentrations of the fragrance compound OTNE in Germany–a comparison between data from measurements and models. Chemosphere 73(8):1366–1372. doi: 10.1016/j.chemosphere.2008.06.057 Google Scholar
  34. 34.
    Schwarzbauer J, Ricking M (2010) Non-target screening analysis of river water as compound-related base for monitoring measures. Environ Sci Pollut Res 17(4):934–947. doi: 10.1007/S11356-009-0269-3 Google Scholar
  35. 35.
    Quednow K, Puttmann W (2008) Organophosphates and synthetic musk fragrances in freshwater streams in Hessen/Germany. Clean Soil Air Water 36(1):70–77. doi: 10.1002/Clen.200700023 Google Scholar
  36. 36.
    Gómez MJ, Herrera S, Solé D, García-Calvo E, Fernández-Alba AR (2012) Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution. Sci Total Environ 420:134–145. doi: 10.1016/j.scitotenv.2012.01.029 Google Scholar
  37. 37.
    Buerge IJ, Buser HR, Muller MD, Poiger T (2003) Behavior of the polycyclic musks HHCB and AHTN in lakes, two potential anthropogenic markers for domestic wastewater in surface waters. Environ Sci Technol 37(24):5636–5644. doi: 10.1021/Es0300721 Google Scholar
  38. 38.
    Teijon G, Candela L, Tamoh K, Molina-Diaz A, Fernandez-Alba AR (2010) Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 408(17):3584–3595. doi: 10.1016/j.scitotenv.2010.04.041 Google Scholar
  39. 39.
    Jurado A, Vazquez-Sune E, Carrera J, Lopez de Alda M, Pujades E, Barcelo D (2012) Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci Total Environ 440:82–94. doi: 10.1016/j.scitotenv.2012.08.029 Google Scholar
  40. 40.
    Bruchet A, Hochereau C, Picard C, Decottignies V, Rodrigues JM, Janex-Habibi ML (2005) Analysis of drugs and personal care products in French source and drinking waters: the analytical challenge and examples of application. Water Sci Technol 52(8):53–61Google Scholar
  41. 41.
    Villa S, Assi L, Ippolito A, Bonfanti P, Finizio A (2012) First evidences of the occurrence of polycyclic synthetic musk fragrances in surface water systems in Italy: spatial and temporal trends in the Molgora River (Lombardia Region, Northern Italy). Sci Total Environ 416:137–141. doi: 10.1016/j.scitotenv.2011.11.027 Google Scholar
  42. 42.
    Terzic S, Senta I, Ahel M, Gros M, Petrovic M, Barcelo D, Muller J, Knepper T, Marti I, Ventura F, Jovancic P, Jabucar D (2008) Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Sci Total Environ 399(1–3):66–77. doi: 10.1016/j.scitotenv.2008.03.003 Google Scholar
  43. 43.
    Matamoros V, Arias CA, Nguyen LX, Salvado V, Brix H (2012) Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere 88(9):1083–1089. doi: 10.1016/j.chemosphere.2012.04.048 Google Scholar
  44. 44.
    Zenker A, Schmutz H, Fent K (2008) Simultaneous trace determination of nine organic UV-absorbing compounds (UV filters) in environmental samples. J Chromatogr A 1202(1):64–74. doi: 10.1016/j.chroma.2008.06.041 Google Scholar
  45. 45.
    Rodil R, Moeder M (2008) Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption-gas chromatography–mass spectrometry. J Chromatogr A 1179(2):81–88. doi: 10.1016/j.chroma.2007.11.090 Google Scholar
  46. 46.
    Kunz PY, Fent K (2006) Multiple hormonal activities of UV filters and comparison of in vivo and in vitro estrogenic activity of ethyl-4-aminobenzoate in fish. Aquat Toxicol 79(4):305–324. doi: 10.1016/j.aquatox.2006.06.016 Google Scholar
  47. 47.
    Schmitt C, Oetken M, Dittberner O, Wagner M, Oehlmann J (2008) Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates Potamopyrgus antipodarum and Lumbriculus variegatus. Environ Pollut 152(2):322–329. doi: 10.1016/j.envpol.2007.06.031 Google Scholar
  48. 48.
    Weisbrod CJ, Kunz PY, Zenker AK, Fent K (2007) Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicol Appl Pharmacol 225(3):255–266. doi: 10.1016/j.taap.2007.08.004 Google Scholar
  49. 49.
    Kunisue T, Chen Z, Buck Louis GM, Sundaram R, Hediger ML, Sun L, Kannan K (2012) Urinary concentrations of benzophenone-type UV filters in U.S. women and their association with endometriosis. Environ Sci Technol 46(8):4624–4632. doi: 10.1021/es204415a Google Scholar
  50. 50.
    Richardson SD, Ternes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77(12):3807–3838. doi: 10.1021/ac058022x Google Scholar
  51. 51.
    Lambropoulou DA, Giokas DL, Sakkas VA, Albanis TA, Karayannis MI (2002) Gas chromatographic determination of 2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid sunscreen agents in swimming pool and bathing waters by solid-phase microextraction. J Chromatogr A 967(2):243–253. doi: 10.1016/S0021-9673(02)00781-1 Google Scholar
  52. 52.
    Giokas DL, Sakkas VA, Albanis TA (2004) Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography-photodiode array detection and gas chromatography–mass spectrometry. J Chromatogr A 1026(1–2):289–293. doi: 10.1016/J.Chroma.2003.10.114 Google Scholar
  53. 53.
    Giokas DL, Sakkas VA, Albanis TA, Lampropoulou DA (2005) Determination of UV-filter residues in bathing waters by liquid chromatography UV-diode array and gas chromatography–mass spectrometry after micelle mediated extraction-solvent back extraction. J Chromatogr A 1077(1):19–27. doi: 10.1016/J.Chroma.2005.04.074 Google Scholar
  54. 54.
    Nguyen KTN, Scapolla C, Di Carro M, Magi E (2011) Rapid and selective determination of UV filters in seawater by liquid chromatography-tandem mass spectrometry combined with stir bar sorptive extraction. Talanta 85(5):2375–2384. doi: 10.1016/j.talanta.2011.07.085 Google Scholar
  55. 55.
    Poiger T, Buser HR, Balmer ME, Bergqvist PA, Muller MD (2004) Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes. Chemosphere 55(7):951–963. doi: 10.1016/j.chemosphere.2004.01.012 Google Scholar
  56. 56.
    Straub JO (2002) Concentrations of the UV filter ethylhexyl methoxycinnamate in the aquatic compartment: a comparison of modelled concentrations for Swiss surface waters with empirical monitoring data. Toxicol Lett 131(1–2):29–37. doi: 10.1016/S0378-4274(02)00042-5 Google Scholar
  57. 57.
    Balmer ME, Buser H-R, Müller MD, Poiger T (2005) Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from swiss lakes. Environ Sci Technol 39(4):953–962. doi: 10.1021/es040055r Google Scholar
  58. 58.
    Cuderman P, Heath E (2007) Determination of UV filters and antimicrobial agents in environmental water samples. Anal Bioanal Chem 387(4):1343–1350. doi: 10.1007/s00216-006-0927-y Google Scholar
  59. 59.
    Pedrouzo M, Borrull F, Marce RM, Pocurull E (2010) Stir-bar-sorptive extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry for simultaneous analysis of UV filters and antimicrobial agents in water samples. Anal Bioanal Chem 397(7):2833–2839. doi: 10.1007/s00216-010-3743-3 Google Scholar
  60. 60.
    Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42(13):3498–3518. doi: 10.1016/j.watres.2008.04.026 Google Scholar
  61. 61.
    Magi E, Di Carro M, Scapolla C, Nguyen KTN (2012) Stir bar sorptive extraction and LC-MS/MS for trace analysis of UV filters in different water matrices. Chromatographia 75(17–18):973–982. doi: 10.1007/s10337-012-2202-z Google Scholar
  62. 62.
    Rodil R, Schrader S, Moeder M (2009) Non-porous membrane-assisted liquid-liquid extraction of UV filter compounds from water samples. J Chromatogr A 1216(24):4887–4894. doi: 10.1016/J.Chroma.2009.04.042 Google Scholar
  63. 63.
    Rodil R, Quintana JB, Concha-Grana E, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86(10):1040–1049. doi: 10.1016/J.Chemosphere.2011.11.053 Google Scholar
  64. 64.
    Gracia-Lor E, Martinez M, Sancho JV, Penuela G, Hernandez F (2012) Multi-class determination of personal care products and pharmaceuticals in environmental and wastewater samples by ultra-high performance liquid-chromatography-tandem mass spectrometry. Talanta 99:1011–1023. doi: 10.1016/j.talanta.2012.07.091 Google Scholar
  65. 65.
    Weston RF (1990) Determination of the vapor pressure of 4-nonylphenol. Final Report Study No. 90–047. Roy F. Weston Inc., Environmental Fate and Effects Laboratory, 254 Welsh Pool Road, Lionville, PA. 15 August 1990Google Scholar
  66. 66.
    Cousins IT, Staples CA, Klecka GM, Mackay D (2002) A multimedia assessment of the environmental fate of bisphenol A. Hum Ecol Risk Assess 8(5):1107–1135. doi: 10.1080/1080-700291905846 Google Scholar
  67. 67.
    Ahel M, Giger W (1993) Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic-solvents. Chemosphere 26(8):1471–1478. doi: 10.1016/0045-6535(93)90214-P Google Scholar
  68. 68.
    Schwarzenbach RP (1986) Sorption behavior of neutral and ionizable hydrophobic organic compounds. In: Bjørseth A, Angeletti G (eds) Organic micropollutants in the aquatic environment. Springer, Netherlands, pp 168–177. doi: 10.1007/978-94-009-4660-6_20 Google Scholar
  69. 69.
    Bolz U, Hagenmaier H, Korner W (2001) Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden-Wurttemberg, south-west Germany. Environ Pollut 115(2):291–301. doi: 10.1016/S0269-7491(01)00100-2 Google Scholar
  70. 70.
    Petrovic M, Fernández-Alba AR, Borrull F, Marce RM, Mazo EG, Barceló D (2002) Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environ Toxicol Chem 21(1):37–46. doi: 10.1002/etc.5620210106 Google Scholar
  71. 71.
    Juhler RK, Felding G (2003) Monitoring methyl tertiary butyl ether (MTBE) and other organic micropollutants in groundwater: results from the Danish national monitoring program. Water Air Soil Pollut 149(1–4):145–161. doi: 10.1023/A:1025690214854 Google Scholar
  72. 72.
    Hohenblum P, Gans O, Moche W, Scharf S, Lorbeer G (2004) Monitoring of selected estrogenic hormones and industrial chemicals in groundwaters and surface waters in Austria. Sci Total Environ 333(1–3):185–193. doi: 10.1016/J.Scitotenv.2004.05.009 Google Scholar
  73. 73.
    Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44(14):4115–4126. doi: 10.1016/j.watres.2010.05.032 Google Scholar
  74. 74.
    Loos R, Wollgast J, Huber T, Hanke G (2007) Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Anal Bioanal Chem 387(4):1469–1478. doi: 10.1007/s00216-006-1036-7 Google Scholar
  75. 75.
    Magi E, Scapolla C, Di Carro M, Liscio C (2010) Determination of endocrine-disrupting compounds in drinking waters by fast liquid chromatography-tandem mass spectrometry. J Mass Spectrom 45(9):1003–1011. doi: 10.1002/jms.1781 Google Scholar
  76. 76.
    Magi E, Di Carro M, Liscio C (2010) Passive sampling and stir bar sorptive extraction for the determination of endocrine-disrupting compounds in water by GC-MS. Anal Bioanal Chem 397(3):1335–1345. doi: 10.1007/s00216-010-3656-1 Google Scholar
  77. 77.
    Di Carro M, Scapolla C, Liscio C, Magi E (2010) Development of a fast liquid chromatography-tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters. Anal Bioanal Chem 398(2):1025–1034. doi: 10.1007/s00216-010-3985-0 Google Scholar
  78. 78.
    McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS (2002) Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem 21(7):1323–1329. doi: 10.1897/1551-5028(2002)021<1323:Motiwt>2.0.Co;2 Google Scholar
  79. 79.
    Thomas PM, Foster GD (2005) Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process. Environ Toxicol Chem 24(1):25–30. doi: 10.1897/04-144r.1 Google Scholar
  80. 80.
    Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36(23):4998–5004. doi: 10.1021/es025750i Google Scholar
  81. 81.
    Okumura T, Nishikawa Y (1996) GC-MS determination of triclosan in water sediment and fish samples via methylation with diazomethane. Anal Chim Acta 325:175–184. doi: 10.1016/0003-2670(96)00027-X Google Scholar
  82. 82.
    von der Ohe PC, Schmitt-Jansen M, Slobodnik J, Brack W (2012) Triclosan-the forgotten priority substance? Environ Sci Pollut Res 19(2):585–591. doi: 10.1007/s11356-011-0580-7 Google Scholar
  83. 83.
    Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res 19(4):1044–1065. doi: 10.1007/s11356-011-0632-z Google Scholar
  84. 84.
    Quintana JB, Reemtsma T (2004) Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 18(7):765–774. doi: 10.1002/rcm.1403 Google Scholar
  85. 85.
    Bester K (2005) Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Contam Toxicol 49(1):9–17. doi: 10.1007/s00244-004-0155-4 Google Scholar
  86. 86.
    Kuster M, de Alda MJ, Hernando MD, Petrovic M, Martin-Alonso J, Barcelo D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J Hydrol 358(1–2):112–123. doi: 10.1016/J.Jhydrol.2008.05.030 Google Scholar
  87. 87.
    Montes R, Rodriguez I, Rubi E, Cela R (2009) Dispersive liquid-liquid microextraction applied to the simultaneous derivatization and concentration of triclosan and methyltriclosan in water samples. J Chromatogr A 1216(2):205–210. doi: 10.1016/j.chroma.2008.11.068 Google Scholar
  88. 88.
    Villaverde-de-Saa E, Gonzalez-Marino I, Quintana JB, Rodil R, Rodriguez I, Cela R (2010) In-sample acetylation-non-porous membrane-assisted liquid-liquid extraction for the determination of parabens and triclosan in water samples. Anal Bioanal Chem 397(6):2559–2568. doi: 10.1007/s00216-010-3789-2 Google Scholar
  89. 89.
    Kantiani L, Farre M, Asperger D, Rubio F, Gonzalez S, de Alda MJL, Petrovic M, Shelver WL, Barcelo D (2008) Triclosan and methyl-triclosan monitoring study in the northeast of Spain using a magnetic particle enzyme immunoassay and confirmatory analysis by gas chromatography–mass spectrometry. J Hydrol 361(1–2):1–9. doi: 10.1016/J.Jhydrol.2008.07.016 Google Scholar
  90. 90.
    Lindström A, Buerge IJ, Poiger T, Bergqvist PA, Muller MD, Buser HR (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36(11):2322–2329. doi: 10.1021/Es0114254 Google Scholar
  91. 91.
    Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of Triclosan in the River Aire Basin, UK. Water Res 37(13):3145–3154. doi: 10.1016/S0043-1354(03)00164-7 Google Scholar
  92. 92.
    Wind T, Werner U, Jacob M, Hauk A (2004) Environmental concentrations of boron, LAS, EDTA, NTA and Triclosan simulated with GREAT-ER in the river Itter. Chemosphere 54(8):1135–1144. doi: 10.1016/J.Chemosphere.2003.09.036 Google Scholar
  93. 93.
    Azzouz A, Ballesteros E (2013) Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant. Chemosphere 93(9):2046–2054. doi: 10.1016/J.Chemosphere.2013.07.037 Google Scholar
  94. 94.
    Moldovan Z (2006) Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere 64(11):1808–1817. doi: 10.1016/J.Chemosphere.2006.02.003 Google Scholar
  95. 95.
    Harvey PW, Everett DJ (2004) Significance of the detection of esters of p-hydroxybenzoic acid (parabens) in human breast tumours. J Appl Toxicol 24(1):1–4. doi: 10.1002/Jat.957 Google Scholar
  96. 96.
    Golden R, Gandy J, Vollmer G (2005) A review of the endocrine activity of parabens and implications for potential risks to human health. Crit Rev Toxicol 35(5):435–458. doi: 10.1080/10408440490920104 Google Scholar
  97. 97.
    Bazin I, Gadal A, Tonraud E, Roig B (2010) Hydroxy benzoate preservatives (parabens) in the environment: data for environmental toxicity assessment. Environ Pollut Ser 16:245–257. doi: 10.1007/978-90-481-3509-7_14 Google Scholar
  98. 98.
    Regueiro J, Becerril E, Garcia-Jares C, Llompart M (2009) Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography-tandem mass spectrometry. J Chromatogr A 1216(23):4693–4702. doi: 10.1016/J.Chroma.2009.04.025 Google Scholar
  99. 99.
    Stuart ME, Manamsa K, Talbot JC, Crane EJ (2011) Emerging contaminants in groundwater. British Geological Survey Open Report, OR/11/013, p 1Google Scholar
  100. 100.
    Stuart ME, Lapworth DJ, Thomas J, Edwards L (2014) Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds. Sci Total Environ 468:564–577. doi: 10.1016/J.Scitotenv.2013.08.042 Google Scholar
  101. 101.
    Ternes TA, Bonerz M, Herrmann N, Teiser B, Andersen HR (2007) Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances. Chemosphere 66(5):894–904. doi: 10.1016/J.Chemosphere.2006.06.035 Google Scholar
  102. 102.
    Liebig M, Moltmann JF, Knacker T (2006) Evaluation of measured and predicted environmental concentrations of selected human pharmaceuticals and personal care products. Environ Sci Pollut Res Int 13(2):110–119Google Scholar
  103. 103.
    Knepper TP (2004) Analysis and mass spectrometric characterization of the insect repellent Bayrepel and its main metabolite Bayrepel-acid. J Chromatogr A 1046(1–2):159–166. doi: 10.1016/J.Chroma.2004.06.067 Google Scholar
  104. 104.
    Eschke HD (2004) Synthetic musks in different water matrices. In: Rimkus G (ed) Synthetic musks in different water matrices. Springer, Berlin, pp 17–28Google Scholar
  105. 105.
    Weigel S, Kuhlmann J, Huhnerfuss H (2002) Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci Total Environ 295(1–3):131–141. doi: 10.1016/S0048-9697(02)00064-5 Google Scholar
  106. 106.
    Cabeza Y, Candela L, Ronen D, Teijon G (2012) Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). J Hazard Mater 239:32–39. doi:10.1016/J.Jhazmat.2012.07.032Google Scholar
  107. 107.
    Petrovic M, Solé M, López De Alda MJ, Barceló D (2002) Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: integration of chemical analysis and biological effects on feral carp. Environ Toxicol Chem 21(10):2146–2156. doi: 10.1002/etc.5620211018 Google Scholar
  108. 108.
    Muller S, Schmid P, Schlatter C (1996) Occurrence of nitro and non-nitro benzenoid musk compounds in human adipose tissue. Chemosphere 33(1):17–28. doi: 10.1016/0045-6535(96)00160-9 Google Scholar
  109. 109.
    de Voogt P, Kwast O, Hendriks R (2002) In: Ethaak DV et al (ed) Estrogens and xeno-estrogens in the aquatic environment of The Netherlands. RIZA/RIKZ report 2002.001 The Hague. ISBN 9036954010Google Scholar
  110. 110.
    Kvestak R, Terzic S, Ahel M (1994) Input and distribution of alkylphenol polyethoxylates in a Stratified Estuary. Mar Chem 46(1–2):89–100. doi: 10.1016/0304-4203(94)90048-5 Google Scholar
  111. 111.
    Kvestak R, Ahel M (1994) Occurrence of toxic metabolites from nonionic surfactants in the Krka River Estuary. Ecotox Environ Safe 28(1):25–34. doi: 10.1006/eesa.1994.1031 Google Scholar
  112. 112.
    Weigel S, Berger U, Jensen E, Kallenborn R, Thoresen H, Huhnerfuss H (2004) Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromso/Norway with emphasis on ibuprofen and its metabolites. Chemosphere 56(6):583–592. doi: 10.1016/j.chemosphere.2004.04.015 Google Scholar
  113. 113.
    Haley RW, Kurt TL, Hom J (1997) Is there a gulf war syndrome?: searching for syndromes by factor analysis of symptoms. JAMA 277(3):215–222. doi: 10.1001/jama.1997.03540270041025 Google Scholar
  114. 114.
    Franke S, Hildebrandt S, Schwarzbauer J, Link M, Francke W (1995) Organic-compounds as contaminants of the Elbe river andits tributaries.2. Gc/Ms screening for contaminants of the Elbe water. Fresen J Anal Chem 353(1):39–49. doi: 10.1007/Bf00322888 Google Scholar
  115. 115.
    Hendriks AJ, Maasdiepeveen JL, Noordsij A, Vandergaag MA (1994) Monitoring response of Xad-concentrated water in the Rhine delta - a major part of the toxic compounds remains unidentified. Water Res 28(3):581–598. doi: 10.1016/0043-1354(94)90009-4 Google Scholar
  116. 116.
    Weigel S, Bester K, Huhnerfuss H (2001) New method for rapid solid-phase extraction of large-volume water samples and its application to non-target screening of North Sea water for organic contaminants by gas chromatography–mass spectrometry. J Chromatogr A 912(1):151–161. doi: 10.1016/S0021-9673(01)00529-5 Google Scholar
  117. 117.
    Dsikowitzky L, Schwarzbauer J, Kronimus A, Littke R (2004) The anthropogenic contribution to the organic load of the Lippe river (Germany). part I: qualitative characterisation of low-molecular weight organic compounds. Chemosphere 57(10):1275–1288. doi: 10.1016/j.chemosphere.2004.08.052 Google Scholar
  118. 118.
    Schwarzbauer J, Heim S (2005) Lipophilic organic contaminants in the Rhine river, Germany. Water Res 39(19):4735–4748. doi: 10.1016/j.watres.2005.09.029 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shivani Tanwar
    • 1
  • Marina Di Carro
    • 1
  • Carmela Ianni
    • 1
  • Emanuele Magi
    • 1
    Email author
  1. 1.Department of Chemistry and Industrial ChemistryUniversity of GenoaGenoaItaly

Personalised recommendations