Advertisement

Sustainable Polyurethanes: Chemical Recycling to Get It

  • D. Simón
  • A. M. Borreguero
  • A. de Lucas
  • C. Gutiérrez
  • J. F. RodríguezEmail author
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)

Abstract

Nowadays polyurethanes are one of the most important classes of polymers in the chemical market due to the huge diversity of their applications. Polyurethane is placed the sixth of the most used plastics in the world ranking. As a consequence of their commercial success, a great quantity of wastes are generated, not only post-consumer products but also scrap from slabstock manufacturing. In the past, landfilling was the solution to the problem, but, nowadays, the new environmental laws do essential to develop environmental sustainable recycling processes. On the one hand, there are physical methods that do not modify the internal structure of the polyurethane and only convert mechanically the wastes in flakes, granules or powder to be used as fillers for new PUs or to be rebounded. However, these physical processes can be only applied with thermoplastic polyurethane, while the majority of polyurethane specialties are thermostable polymers. Therefore, chemical processes are mainly used to recycle polyurethane wastes. These chemical recycling processes allow to obtain basic hydrocarboned units known as monomers that are able to be used as synthesis materials in chemical and petrochemical industry. This way, it is possible to achieve high value-added products that can be used in the synthesis of new polyurethane products. Thus, the main aim of this chapter is to describe the presently known technologies for the chemical recycling of polyurethane wastes.

Keywords

Glycolysis Polyol Polyurethane Recycling Wastes 

References

  1. 1.
    Behrendt G, Naber BW (2009) The recycling of polyurethanes (review). J Univ Chem Technol Metallurg 44(1):3–23Google Scholar
  2. 2.
    Herlinger H (1970) Struktur und Reaktivit der Isocyante (Structure and reactivity of isocyanate). StuttgartGoogle Scholar
  3. 3.
    Woods G (1982) Flexible polyurethane foams: chemistry and technology. Applied Science Publishers, Barking, EssexGoogle Scholar
  4. 4.
    Wu J, Wang Y, Wan Y, Lei H, Yu F, Liu Y, Chen P, Yang L, Ruan R (2009) Processing and properties of rigid polyurethane foams based on bio-oils from microwave-assisted pyrolysis of corn stover. Int J Agric Biol Eng 2(1):40–50Google Scholar
  5. 5.
    Ullmann’s Encyclopedia (2005) Polyurethanes. Wiley, Weinheim. doi:10.1002/14356007. a21_665.pub2Google Scholar
  6. 6.
    Singh SN (2001) Blowing agents for polyurethane foams, vol 12, Number 10. Rapra Review Reports. Report 142Google Scholar
  7. 7.
    Zevenhoven R (2004) Treatment and disposal of polyurethane wastes: options for recovery and recycling. Energy Engineering and Environmental Protection Publications Espoo 2004. Report TKK-ENY-19Google Scholar
  8. 8.
    Oertel G (1985) Polyurethane handbook. Hanser Publishers, MunichGoogle Scholar
  9. 9.
    Tan S, Abraham T, Ference D, Macosko CW (2011) Rigid polyurethane foams from a soybean oil-based polyol. Polymer 52:2840–2846CrossRefGoogle Scholar
  10. 10.
    O’Connor JM (2012) Polyurethane coatings and elastomers. American Chemistry Council. Center for the Polyurethanes Industry. September 24–26, 2012. Atlanta, GeorgiaGoogle Scholar
  11. 11.
    De SK, White JR (eds) (2001) Rubber technologist’s handbook. Rapra Technology, ShawburyGoogle Scholar
  12. 12.
    O’Connor JM (2012) Polyurethane sealants, adhesives and binders. American Chemistry Council. Center for the Polyurethanes Industry. September 24–26, 2012. Atlanta, GeorgiaGoogle Scholar
  13. 13.
    DIN 16920 (1981) standard published by Deutsches Institut Fur Normung E.V. (German National Standard)Google Scholar
  14. 14.
    Bastian C (1994) A European strategy for recycling. Paper 50 presented at UTECH 94 Conf. The HagueGoogle Scholar
  15. 15.
    ASTM D5033-00 Standard Guide for Development of ASTM Standards Relating to Recycling and Use of Recycled Plastics (Withdrawn 2007)Google Scholar
  16. 16.
    ISOPA (2001) Recycling and recovering polyurethanes: rebonded flexible foam. BrusselsGoogle Scholar
  17. 17.
    ISOPA (2001) Recycling and recovering polyurethanes: regrinding/powdering. BrusselsGoogle Scholar
  18. 18.
    ISOPA (2001) Recycling and recovering polyurethanes: compression moulding. BrusselsGoogle Scholar
  19. 19.
    Hicks DA, Krommenhoek M, Soderberg DJ, Hooper JFG (1994) Polyurethanes recycling and waste management. Paper 51 presented at UTECH 94 Conf. The HagueGoogle Scholar
  20. 20.
    Campbell GA, Meluch WC (1976) Polyurethane foam recycling – superheated steam hydrolysis. Environ Sci Tech 10(2):182–185CrossRefGoogle Scholar
  21. 21.
    Dai Z, Hatano B, Kadokawa J, Tagaya H (2002) Effect of diaminotoluene on the decomposition of polyurethane foam waste in superheated water. Polym Degrad Stabil 76(2):179–184CrossRefGoogle Scholar
  22. 22.
    Gerlock JL, Braslaw J, Mahoney LR, Ferris FC (1980) Reaction of polyurethane foam with dry steam: kinetics and mechanism of reactions. J Polym Sci Pol Chem 18(2):541–557CrossRefGoogle Scholar
  23. 23.
    Matuszak ML, Frisch KC, Reegen SL (1973) Hydrolysis of linear polyurethanes and model monocarbamates. J Polym Sci Pol Chem 11(7):1683–1690CrossRefGoogle Scholar
  24. 24.
    Anon (1976) Recovery of expanded polyurethanes by steam hydrolysis. Mater Plast Elastomeri 3:202–205Google Scholar
  25. 25.
    Grigat E (1978) Hydrolysis of plastics wastes. Kunstst Ger Plast 68(5):12–13Google Scholar
  26. 26.
    Shi Y, Zhan X, Zhang Q, Chen F (2009) Interfacial hydrolysis of isocyanate in monomer miniemulsion. Chem React Eng Technol 25:88Google Scholar
  27. 27.
    Gerlock J, Braslaw J, Zimbo M (1984) Polyurethane waste recycling 1. Glycolysis and hydroglycolysis of water-blown foams. Ind Eng Chem Proc Des Dev 23(3):545–552CrossRefGoogle Scholar
  28. 28.
    Nikje MMA, Nikrah M, Mohammadi FHA (2008) Microwave-assisted polyurethane bond cleavage via hydroglycolysis process at atmospheric pressure. J Cell Plast 44(5):367–380CrossRefGoogle Scholar
  29. 29.
    Nikje MMA, Mohammadi FHA (2009) Sorbitol/glycerin/water ternary system as a novel glycolysis agent for flexible polyurethane foam in the chemical recycling using microwave radiation. Polim Polym 54(7–8):541–545Google Scholar
  30. 30.
    Braslaw J, Gerlock JL (1984) Polyurethane waste recycling 2. Polyol recovery and purification. Ind Eng Chem Proc Des Dev 23(3):552–557CrossRefGoogle Scholar
  31. 31.
    Weigand E, Raβhofer W (1999) Present state of polyurethane recycling in Europe. In: Advances in Plastic Recycling, vol 1: recycling of polyurethanes. Technomic Publishing CO, LancasterGoogle Scholar
  32. 32.
    Wu CH, Chang CY, Cheng CH, Huang HC (2003) Glycolysis of waste flexible polyurethane foam. Polym Degrad Stabil 80(1):103–111CrossRefGoogle Scholar
  33. 33.
    Bauer G (1996) Recycling of polyurethanes. In: Weigand E (ed) Recycling and recovery of plastics. Hanser Publishers, München, pp 518–537Google Scholar
  34. 34.
    Borda J, Päsztor G, Zsuga M (2000) Glycolysis of polyurethane foams and elastomers. Polym Degrad Stabil 68(3):419–422CrossRefGoogle Scholar
  35. 35.
    Simioni F, Modesti M, Rienzi SA (1987) Polyol recovery from elastomer polyurethane waste. Cell Polym 6(6):27–41Google Scholar
  36. 36.
    Simioni F, Modesti M (1991) Controlled degradation of polyurethane for recycling. Mater Sci Eng 2:127–144Google Scholar
  37. 37.
    Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis with new catalysts. Polym Degrad Stabil 91:894–901CrossRefGoogle Scholar
  38. 38.
    Molero C, de Lucas A, Rodríguez JF (2009) Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polym Degrad Stabil 94(4):533–539CrossRefGoogle Scholar
  39. 39.
    Molero C, de Lucas A, Romero F, Rodríguez JF (2009) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst. J Mater Cycles Waste Manage 11(2):130–132CrossRefGoogle Scholar
  40. 40.
    Simón D, García MT, de Lucas A, Borreguero AM, Rodríguez JF (2013) Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: study on the influence of reaction parameters. Polym Degrad Stabil 98(1):144–149CrossRefGoogle Scholar
  41. 41.
    Modesti M (1996) Recycling of polyurethane polymers. Advances in urethane science and technology, vol 13. Technomic Publishing CO., LancasterGoogle Scholar
  42. 42.
    Ullmann’s Encyclopedia of Industrial Chemistry (2003). 6th edition. Wiley-VCH, WeinheimGoogle Scholar
  43. 43.
    Borda J, Rácz A, Zsuga M (2002) Recycled polyurethane elastomers: a universal adhesive. J Adhes Sci and Technol 16(9):1225–1234CrossRefGoogle Scholar
  44. 44.
    Wang X, Chen H, Chen C, Li H (2011) Chemical degradation of thermoplastic polyurethane for recycling polyether polyol. Fiber Polym 12(7):857–863CrossRefGoogle Scholar
  45. 45.
    Datta J, Haponiuk JT (2008) Advanced coating of interior of tanks for rising environmental safety - novel applications of polyurethanes. Pol Marit Res Special Issue 2008:8–13Google Scholar
  46. 46.
    Simioni F, Bisello S, Tavan M (1983) Polyol recovery from rigid polyurethane waste. Cell Polym 2(4):281–293Google Scholar
  47. 47.
    Xue S, He F, Omoto M, Hidai T, Imai Y (1993) General purpose adhesives prepared from chemically decomposed waste rigid polyurethane foams. Kobunshi Ronbunshu 50(11):847–853CrossRefGoogle Scholar
  48. 48.
    Morooka H, Nakakawaji T, Okamoto S, Araki K, Yamada E (2005) Chemical recycling of rigid polyurethane foam for refrigerators. Polym Prepr 54(1):1951Google Scholar
  49. 49.
    Murai M, Sanou M, Fujimoto T, Baba F (2003) Glycolysis of rigid polyurethane foam under various reaction conditions. J Cell Plast 39(1):15–27CrossRefGoogle Scholar
  50. 50.
    Nikje MMA, Nikrah M (2007) Chemical recycling and liquefaction of rigid polyurethane foam wastes through microwave assisted glycolysis process. J Macromol Sci Pure 44(6):613–617CrossRefGoogle Scholar
  51. 51.
    Modesti M, Simioni F, Munari R, Baldoin N (1995) Recycling of flexible polyurethane foams with a low aromatic amine content. React Funct Polym 26:157–165CrossRefGoogle Scholar
  52. 52.
    Nikje MMA, Nikrah M, Haghshenas M (2007) Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes. Polym Bull 59:91–104CrossRefGoogle Scholar
  53. 53.
    Scheirs J (ed) (1998) Polymer recycling. Wiley, UK, pp 339–377Google Scholar
  54. 54.
    Nikje MMA, Garmarudi AB (2010) Regeneration of polyol by pentaerythritol-assisted glycolysis of flexible polyurethane foam wastes. Iran Polym J 19(4):287–295Google Scholar
  55. 55.
    Nikje MMA, Mohammadi FHA (2010) Polyurethane foam wastes recycling under microwave irradiation. Polym-Plast Technol 49:818–821CrossRefGoogle Scholar
  56. 56.
    Datta J, Rohn M (2007) Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates. J Therm Anal Calorim 88(2):437–440CrossRefGoogle Scholar
  57. 57.
    Datta J (2012) Effect of glycols used as glycolysis agents on chemical structure and thermal stability of the produced glycolysates. J Therm Anal Calorim 109:517–520CrossRefGoogle Scholar
  58. 58.
    Molero C, de Lucas A, Rodríguez JF (2006) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: glycol influence. Polym Degrad Stabil 91(2):221–228CrossRefGoogle Scholar
  59. 59.
    Molero C, de Lucas A, Rodríguez JF (2008) Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: study on the influence of reaction parameters. Polym Degrad Stabil 93(2):353–361CrossRefGoogle Scholar
  60. 60.
    Molero C, de Lucas A, Rodríguez JF (2006) Purification by liquid extraction of recovered polyols. Solv Extr Ion Exch 24(5):719–730CrossRefGoogle Scholar
  61. 61.
    Molero C, de Lucas A, Romero F, Rodríguez JF (2008) Influence of the use of recycled polyols obtained by glycolysis on the preparation and physical properties of flexible polyurethane. J Appl Polym Sci 109(1):617–626CrossRefGoogle Scholar
  62. 62.
    Simón D, Borreguero AM, de Lucas A, Molero C, Rodríguez JF (2013) Novel polyol initiator from polyurethane recycling residue. J Mater Cycles Waste Manage. doi: 10.1007/s10163-013-0205-y Google Scholar
  63. 63.
    Sheratte MB (1978) Process for converting the decomposition products of polyurethane and novel compositions thereby obtained. US Pat 4,110,266Google Scholar
  64. 64.
    Higashi F, Taguchi Y, Kokubo N, Ohta H (1981) Effect of initiation condition on the direct polycondensation reaction using triphenyl phosphite and pyridine. J Polym Sci Pol Chem 19(11):2745–2750CrossRefGoogle Scholar
  65. 65.
    Xue S, Omoto M, Hidai T, Imai Y (1995) Preparation of epoxy hardeners from waste rigid polyurethane foam and their applications. J Appl Polym Sci 56(2):127–134CrossRefGoogle Scholar
  66. 66.
    Kanaya K, Takahashi S (1994) Decomposition of polyurethane foams by alkanolamines. J Appl Polym Sci 51(4):675–682CrossRefGoogle Scholar
  67. 67.
    Chuayjuljit S, Norakankorn C, Pimpan V (2002) Chemical recycling of rigid polyurethane foam scrap via base catalyzed aminolysis. JOM 12(1):19–22Google Scholar
  68. 68.
    Van Der Wal HR (1994) New chemical recycling process for polyurethane. J Reinf Plast Compos 51:87–96Google Scholar
  69. 69.
    Troev K, Tsekova A, Tsevi R (2000) Chemical degradation of polyurethanes: degradation of flexible polyester polyurethane foam by phosphonic acid dialkyl esters. J Appl Polym Sci 78(14):2565–2573CrossRefGoogle Scholar
  70. 70.
    Troev K, Tsekova A, Tsevi R (2000) Chemical degradation of polyurethanes II. Degradation of flexible polyether foam by dimethyl phosphonate. Polym Degrad Stabil 67:397–405CrossRefGoogle Scholar
  71. 71.
    Troev K, Atanasov VI, Tsevi R, Grancharov G, Tsekova A (2000) Chemical degradation of polyurethanes. Degradation of microporous polyurethane elastomer by dimethyl phosphonate. Polym Degrad Stabil 67:159–165CrossRefGoogle Scholar
  72. 72.
    Troev K, Atanasov VI, Tsevi R (2000) Chemical degradation of polyurethanes II. Degradation of microporous polyurethane elastomer by phosphoric acid esters. J Appl Polym Sci 76:886–893CrossRefGoogle Scholar
  73. 73.
    Troev K, Grancharov G, Tsevi R (2000) Chemical degradation of polyurethanes III. Degradation of microporous polyurethane elastomer by diethyl phosphonate and tris(1-methyl-2-chloroethyl) phosphate. Polym Degrad Stabil 70:43–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • D. Simón
    • 1
  • A. M. Borreguero
    • 1
  • A. de Lucas
    • 1
  • C. Gutiérrez
    • 1
  • J. F. Rodríguez
    • 1
    Email author
  1. 1.Institute of Chemical and Environmental Technology (ITQUIMA)University of CastillaLa ManchaSpain

Personalised recommendations