Microbial Fuel Cell: The Definitive Technological Approach for Valorizing Organic Wastes

  • F. J. Fernández
  • J. Lobato
  • J. Villaseñor
  • M. A. RodrigoEmail author
  • P. Cañizares
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)


Microbial fuel cells (MFC) are promising bioelectrochemical devices which are currently being developed to harvest energy from wastes. Its state of the art is within a stage of maturity that makes research on this topic ambitious and feasible at the same time, and hence, development of MFC can be considered as research at the edge of knowledge embracing multidisciplinary and the hottest topics of research in chemical engineering: energy, environment, and biotechnology. This chapter describes the fundamentals of the MFC technology and some of its applications, also focusing on the most relevant challenges, which include solving two key problems: cost of comburent and target of applications. Regarding to the first one, a comprehensive review of the main references published during the recent years in algae and natural MFC is presented. Regarding the second, attention is focused on wastewater treatment but other applications are also described. A complete review of the most relevant references on the technology using SCOPUS and WoS is included in the chapter.


Bioelectrochemical system Energy Microbial fuel cells Organic wastes 



Financial support from Ministerio de Economia y Competitividad of the Spanish Government through projects CTM2013-45612-R and CTQ2013-49748-EXP are gratefully acknowledged.


  1. 1.
    Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66(4):1292–1297. doi: 10.1128/aem.66.4.1292-1297.2000 Google Scholar
  2. 2.
    Palmore GTR, Bertschy H, Bergens SH, Whitesides GM (1998) A methanol/dioxygen biofuel cell that uses NAD(+)-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem 443(1):155–161. doi: 10.1016/s0022-0728(97)00393-8 Google Scholar
  3. 3.
    Topcagic S, Minteer SD (2006) Development of a membraneless ethanol/oxygen biofuel cell. Electrochim Acta 51(11):2168–2172. doi: 10.1016/j.electacta.2005.03.090 Google Scholar
  4. 4.
    Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555. doi: 10.1128/aem.69.3.1548-1555.2003 Google Scholar
  5. 5.
    Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem 39(8):1007–1012. doi: 10.1016/s0032-9592(03)00203-6 Google Scholar
  6. 6.
    Rodrigo MA, Canizares P, Garcia H, Linares JJ, Lobato J (2009) Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresour Technol 100(20):4704–4710. doi: 10.1016/j.biortech.2009.04.073 Google Scholar
  7. 7.
    Bebelis S, Bouzek K, Cornell A, Ferreira MGS, Kelsall GH, Lapicque F, Ponce de León C, Rodrigo MA, Walsh FC (2013) Highlights during the development of electrochemical engineering. Chem Eng Res Des 91(10):1998–2020Google Scholar
  8. 8.
    Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme Microb Technol 30(2):145–152. doi: 10.1016/s0141-0229(01)00478-1 Google Scholar
  9. 9.
    Bannetto H (1991) Electricity generation by microorganisms. Biotechnol Edu 1:168Google Scholar
  10. 10.
    Logan BE (2012) Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem 5(6):988–994. doi: 10.1002/cssc.201100604 Google Scholar
  11. 11.
    Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690. doi: 10.1126/science.1217412 Google Scholar
  12. 12.
    Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. doi: 10.1021/es0605016 Google Scholar
  13. 13.
    Mook WT, Aroua MKT, Chakrabarti MH, Noor IM, Irfan MF, Low CTJ (2013) A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems. J Ind Eng Chem 19(1):1–13. doi: 10.1016/j.jiec.2012.07.004 Google Scholar
  14. 14.
    Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42(12):3013–3024. doi: 10.1016/j.watres.2008.03.017 Google Scholar
  15. 15.
    Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44(9):2970–2980. doi: 10.1016/j.watres.2010.02.022 Google Scholar
  16. 16.
    Velasquez-Orta SB, Head IM, Curtis TP, Scott K (2011) Factors affecting current production in microbial fuel cells using different industrial wastewaters. Bioresour Technol 102(8):5105–5112. doi: 10.1016/j.biortech.2011.01.059 Google Scholar
  17. 17.
    Rodrigo MA, Canizares P, Lobato J, Paz R, Saez C, Linares JJ (2007) Production of electricity from the treatment of urban waste water using a microbial fuel cell. J Power Sources 169(1):198–204. doi: 10.1016/j.jpowsour.2007.01.054 Google Scholar
  18. 18.
    Gonzalez del Campo A, Lobato J, Canizares P, Rodrigo MA, Fernandez Morales FJ (2013) Short-term effects of temperature and COD in a microbial fuel cell. Appl Energy 101:213–217. doi: 10.1016/j.apenergy.2012.02.064 Google Scholar
  19. 19.
    Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25(18):1531–1535. doi: 10.1023/a:1025484009367 Google Scholar
  20. 20.
    Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482. doi: 10.1016/j.biotechadv.2007.05.004 Google Scholar
  21. 21.
    Cercado-Quezada B, Delia M-L, Bergel A (2010) Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour Technol 101(8):2748–2754. doi: 10.1016/j.biortech.2009.11.076 Google Scholar
  22. 22.
    Oh S, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38(18):4900–4904. doi: 10.1021/es049422p Google Scholar
  23. 23.
    Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52(1–2):31–37Google Scholar
  24. 24.
    Moon H, Chang IS, Jang JK, Kim BH (2005) Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem Eng J 27(1):59–65. doi: 10.1016/j.bej.2005.02.010 Google Scholar
  25. 25.
    Morris JM, Jin S (2009) Influence of NO3 and SO4 on power generation from microbial fuel cells. Chem Eng J 153(1–3):127–130. doi: 10.1016/j.cej.2009.06.023 Google Scholar
  26. 26.
    Larrosa A, Lozano LJ, Katuri KP, Head I, Scott K, Godinez C (2009) On the repeatability and reproducibility of experimental two-chambered microbial fuel cells. Fuel 88(10):1852–1857. doi: 10.1016/j.fuel.2009.04.026 Google Scholar
  27. 27.
    Niessen J, Harnisch F, Rosenbaum M, Schroder U, Scholz F (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8(5):869–873. doi: 10.1016/j.elecom.2006.03.025 Google Scholar
  28. 28.
    Parot S, Delia M-L, Bergel A (2008) Acetate to enhance electrochemical activity of biofilms from garden compost. Electrochim Acta 53(6):2737–2742. doi: 10.1016/j.electacta.2007.10.059 Google Scholar
  29. 29.
    Scott K, Murano C (2007) Microbial fuel cells utilising carbohydrates. J Chem Technol Biotechnol 82(1):92–100. doi: 10.1002/jctb.1641 Google Scholar
  30. 30.
    More TT, Ghangrekar MM (2010) Improving performance of microbial fuel cell with ultrasonication pre-treatment of mixed anaerobic inoculum sludge. Bioresour Technol 101(2):562–567. doi: 10.1016/j.biortech.2009.08.045 Google Scholar
  31. 31.
    Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68(1):23–30. doi: 10.1007/s00253-004-1845-6 Google Scholar
  32. 32.
    Lobato J, Canizares P, Jesus Fernandez F, Rodrigo MA (2012) An evaluation of aerobic and anaerobic sludges as start-up material for microbial fuel cell systems. N Biotechnol 29(3):415–420. doi: 10.1016/j.nbt.2011.09.004 Google Scholar
  33. 33.
    Rodrigo MA, Canizares P, Lobato J (2010) Effect of the electron-acceptors on the performance of a MFC. Bioresour Technol 101(18):7014–7018. doi: 10.1016/j.biortech.2010.04.013 Google Scholar
  34. 34.
    Franks AE, Nevin KP (2010) Microbial fuel cells: a current review. Energies 3(5):899–919. doi: 10.3390/en3050899 Google Scholar
  35. 35.
    Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41(21):7564–7569. doi: 10.1021/es0709831 Google Scholar
  36. 36.
    Hu Z (2008) Electricity generation by a baffle-chamber membraneless microbial fuel cell. J Power Sources 179(1):27–33. doi: 10.1016/j.jpowsour.2007.12.094 Google Scholar
  37. 37.
    Freguia S, Rabaey K, Yuan Z, Keller J (2007) Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ Sci Technol 41(8):2915–2921. doi: 10.1021/es062611i Google Scholar
  38. 38.
    Powell EE, Mapiour ML, Evitts RW, Hill GA (2009) Growth kinetics of Chlorella vulgaris and its use as a cathodic half cell. Bioresour Technol 100(1):269–274. doi: 10.1016/j.biortech.2008.05.032 Google Scholar
  39. 39.
    Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21(3):259–264. doi: 10.1016/j.copbio.2010.03.010 Google Scholar
  40. 40.
    Strik DPBTB, Terlouw H, Hamelers HVM, Buisman CJN (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81(4):659–668. doi: 10.1007/s00253-008-1679-8 Google Scholar
  41. 41.
    Lobato J, Gonzalez del Campo A, Fernandez FJ, Canizares P, Rodrigo MA (2013) Lagooning microbial fuel cells: a first approach by coupling electricity-producing microorganisms and algae. Appl Energy 110:220–226. doi: 10.1016/j.apenergy.2013.04.010 Google Scholar
  42. 42.
    de Schamphelaire L, van den Bossche L, Dang HS, Hofte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42(8):3053–3058. doi: 10.1021/es071938w Google Scholar
  43. 43.
    De Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstraete W (2008) Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. J Microbial Biotechnol 1(6):446–462. doi: 10.1111/j.1751-7915.2008.00042.x Google Scholar
  44. 44.
    Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32(9):870–876. doi: 10.1002/er.1397 Google Scholar
  45. 45.
    Reimers CE, Girguis P, Stecher HA III, Tender LM, Ryckelynck N, Whaling P (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4(2):123–136. doi: 10.1111/j.1472-4669.2006.00071.x Google Scholar
  46. 46.
    Rabaey K, Boon N, Höfte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Tech 39(9):3401–3408Google Scholar
  47. 47.
    Allen RM, Bennetto HP (1993) Microbial fuel-cells - electricity production from carbohydrates. Appl Biochem Biotechnol 39–40(1):27–40Google Scholar
  48. 48.
    Jung S (2012) Impedance analysis of Geobacter sulfurreducens PCA, Shewanella oneidensis MR-1, and their coculture in bioeletrochemical systems. Int J Electrochem Sci 7(11):11091–11100Google Scholar
  49. 49.
    Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382Google Scholar
  50. 50.
    Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE (2012) Convergent development of anodic bacterial communities in microbial fuel cells. ISME J 6(11):2002–2013Google Scholar
  51. 51.
    Yong XY, Feng J, Chen YL, Shi DY, Xu YS, Zhou J, Wang SY, Xu L, Yong YC, Sun YM, Shi CL, OuYang PK, Zheng T (2014) Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosens Bioelectron 56:19–25Google Scholar
  52. 52.
    Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63(6):672–681Google Scholar
  53. 53.
    Infantes D, González Del Campo A, Villaseñor J, Fernández FJ (2011) Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. Int J Hydrogen Energy 36(24):15595–15601Google Scholar
  54. 54.
    Nealson KH, Finkel SE (2011) Electron flow and biofilms. MRS Bull 36(5):380–384Google Scholar
  55. 55.
    Marsili E, Sun J, Bond DR (2010) Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential. Electroanalysis 22(7–8):865–874Google Scholar
  56. 56.
    Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Tech 40(17):5181–5192Google Scholar
  57. 57.
    Von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74(3):615–623Google Scholar
  58. 58.
    Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105(10):3968–3973Google Scholar
  59. 59.
    Shukla AK, Suresh P, Berchmans S, Rajendran A (2004) Biological fuel cells and their applications. Curr Sci 87(4):455–468Google Scholar
  60. 60.
    Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355Google Scholar
  61. 61.
    Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6):297–306Google Scholar
  62. 62.
    Dos Santos AB, Traverse J, Cervantes FJ, Van Lier JB (2005) Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobic treatment and redox mediators. Biotechnol Bioeng 89(1):42–52Google Scholar
  63. 63.
    Velasquez-Orta SB, Head IM, Curtis TP, Scott K, Lloyd JR, Von Canstein H (2010) The effect of flavin electron shuttles in microbial fuel cells current production. Appl Microbiol Biotechnol 85(5):1373–1381Google Scholar
  64. 64.
    Chang BV, Yuan SY, Ren YL (2012) Anaerobic degradation of tetrabromobisphenol-A in river sediment. Ecol Eng 49:73–76Google Scholar
  65. 65.
    Rosenbaum M, Schroder U, Scholz F (2005) Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl Microbiol Biotechnol 68(6):753–756. doi: 10.1007/s00253-005-1915-4 Google Scholar
  66. 66.
    Tanaka K, Tamamushi R, Ogawa T (1985) bioelectrochemical fuel-cells operated by the cyanobacterium, anabaena-variabilis. J Chem Technol Biotechnol 35(3):191–197Google Scholar
  67. 67.
    Rosenbaum M, Agler MT, Fornero JJ, Venkataraman A, Angenent LT (2010) Integrating BES in the wastewater and sludge treatment line. In: Rabaey K, Angenent LT, Schröder U, Keller J (eds) Bioelectrochemical system: from extracellular electron transfer to biotechnological application. International Water Association, London, UKGoogle Scholar
  68. 68.
    De Schamphelaire L, Cabezas A, Marzorati M, Friedrich MW, Boon N, Verstraete W (2010) Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Appl Environ Microbiol 76(6):2002–2008. doi: 10.1128/aem.02432-09 Google Scholar
  69. 69.
    Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543. doi: 10.1016/j.biortech.2009.10.017 Google Scholar
  70. 70.
    Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815. doi: 10.1016/j.watres.2006.06.011 Google Scholar
  71. 71.
    Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212. doi: 10.1002/bit.21875 Google Scholar
  72. 72.
    De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103(2):296–304. doi: 10.1002/bit.22257 Google Scholar
  73. 73.
    Wang X, Feng Y, Liu J, Lee H, Li C, Li N, Ren N (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25(12):2639–2643. doi: 10.1016/j.bios.2010.04.036 Google Scholar
  74. 74.
    Xiao L, Young EB, Berges JA, He Z (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46(20):11459–11466. doi: 10.1021/es303144n Google Scholar
  75. 75.
    Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Solar energy powered microbial fuel cell with a reversible bioelectrode. Environ Sci Technol 44(1):532–537. doi: 10.1021/es902435v Google Scholar
  76. 76.
    Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Ham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41(9):3354–3360. doi: 10.1021/es062580r Google Scholar
  77. 77.
    Ter Heijne A, Hamelers HVM, Buisman CJN (2007) Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ Sci Technol 41(11):4130–4134. doi: 10.1021/es0702824 Google Scholar
  78. 78.
    Gonzalez del Campo A, Canizares P, Rodrigo MA, Fernandez FJ, Lobato J (2013) Microbial fuel cell with an algae-assisted cathode: a preliminary assessment. J Power Sources 242:638–645. doi: 10.1016/j.jpowsour.2013.05.110 Google Scholar
  79. 79.
    Huang L, Cheng S, Chen G (2011) Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol 86(4):481–491. doi: 10.1002/jctb.2551 Google Scholar
  80. 80.
    Rozendal RA, Hamelers HVM, Buisman CJN (2006) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40(17):5206–5211. doi: 10.1021/es060387r Google Scholar
  81. 81.
    Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42. doi: 10.1016/j.biortech.2010.06.158 Google Scholar
  82. 82.
    Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT (2010) Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ Sci Technol 44(7):2728–2734. doi: 10.1021/es9031985 Google Scholar
  83. 83.
    Lyautey E, Cournet A, Morin S, Bouletreau S, Etcheverry L, Charcosset J-Y, Delmas F, Bergel A, Garabetian F (2011) Electroactivity of phototrophic river biofilms and constitutive cultivable bacteria. Appl Environ Microbiol 77(15):5394–5401. doi: 10.1128/aem.00500-11 Google Scholar
  84. 84.
    Walter XA, Greenman J, Ieropoulos IA (2013) Oxygenic phototrophic biofilms for improved cathode performance in microbial fuel cells. Algal Res 2(3):183–187. doi: 10.1016/j.algal.2013.02.002 Google Scholar
  85. 85.
    Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35(1):192–195. doi: 10.1021/es001223s Google Scholar
  86. 86.
    Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20(8):821–825. doi: 10.1038/nbt716 Google Scholar
  87. 87.
    Song T-S, Yan Z-S, Zhao Z-W, Jiang H-L (2010) Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances. J Chem Technol Biotechnol 85(11):1489–1493. doi: 10.1002/jctb.2454 Google Scholar
  88. 88.
    Song T-S, Jiang H-L (2011) Effects of sediment pretreatment on the performance of sediment microbial fuel cells. Bioresour Technol 102(22):10465–10470. doi: 10.1016/j.biortech.2011.08.129 Google Scholar
  89. 89.
    Song T-S, Yan Z-S, Zhao Z-W, Jiang H-L (2011) Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess Biosyst Eng 34(5):621–627. doi: 10.1007/s00449-010-0511-x Google Scholar
  90. 90.
    Yuan Y, Zhou S, Zhuang L (2010) A new approach to in situ sediment remediation based on air-cathode microbial fuel cells. J Soils Sediments 10(7):1427–1433. doi: 10.1007/s11368-010-0276-5 Google Scholar
  91. 91.
    Morris JM, Jin S (2012) Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J Hazard Mater 213:474–477. doi: 10.1016/j.jhazmat.2012.02.029 Google Scholar
  92. 92.
    Yan Z, Song N, Cai H, Tay J-H, Jiang H (2012) Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J Hazard Mater 199:217–225. doi: 10.1016/j.jhazmat.2011.10.087 Google Scholar
  93. 93.
    Huang D-Y, Zhou S-G, Chen Q, Zhao B, Yuan Y, Zhuang L (2011) Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J 172(2–3):647–653. doi: 10.1016/j.cej.2011.06.024 Google Scholar
  94. 94.
    Dominguez-Garay A, Berna A, Ortiz-Bernad I, Esteve-Nunez A (2013) Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil. Environ Sci Technol 47(4):2117–2122. doi: 10.1021/es303436x Google Scholar
  95. 95.
    Nielsen ME, Reimers CE, White HK, Sharma S, Girguis PR (2008) Sustainable energy from deep ocean cold seeps. Energy Environ Sci 1(5):584–593. doi: 10.1039/b811899j Google Scholar
  96. 96.
    Song T-S, Wang D-B, Han S, X-y W, Zhou CC (2014) Influence of biomass addition on electricity harvesting from solid phase microbial fuel cells. Int J Hydrogen Energy 39(2):1056–1062. doi: 10.1016/j.ijhydene.2013.10.125 Google Scholar
  97. 97.
    Zhang Y, Angelidaki I (2012) Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Res 46(19):6445–6453. doi: 10.1016/j.watres.2012.09.022 Google Scholar
  98. 98.
    Zhang Y, Angelidaki I (2012) Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments. Biosens Bioelectron 35(1):265–270. doi: 10.1016/j.bios.2012.02.059 Google Scholar
  99. 99.
    Jung SP, Yoon M-H, Lee S-M, Oh S-E, Kang H, Yang J-K (2014) Power generation and anode bacterial community compositions of sediment fuel cells differing in anode materials and carbon sources. Int J Electrochem Sci 9(1):315–326Google Scholar
  100. 100.
    Sajana TK, Ghangrekar MM, Mitra A (2014) Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresour Technol 155:84–90Google Scholar
  101. 101.
    Zhao J, Li X-F, Ren Y-P, Wang X-H, Jian C (2012) Electricity generation from Taihu Lake cyanobacteria by sediment microbial fuel cells. J Chem Technol Biotechnol 87(11):1567–1573. doi: 10.1002/jctb.3794 Google Scholar
  102. 102.
    Kim M, Ekpeghere KI, Kim SH, Chang JS, Koh SC (2012) Analysis of microbial communities in aquatic sediment microbial fuel cells injected with glucose. Kor J Microbiol 48(4):254–261Google Scholar
  103. 103.
    Ueno Y, Kitajima Y (2012) Suppression of methane Gas emission from sediment using a bioelectrochemical system. Environ Eng Manage J 11(10):1833–1837Google Scholar
  104. 104.
    Ajayi FF, Weigele PR (2012) A terracotta bio-battery. Bioresour Technol 116:86–91. doi: 10.1016/j.biortech.2012.04.019 Google Scholar
  105. 105.
    Babu ML, Mohan SV (2012) Influence of graphite flake addition to sediment on electrogenesis in a sediment-type fuel cell. Bioresour Technol 110:206–213. doi: 10.1016/j.biortech.2012.01.064 Google Scholar
  106. 106.
    Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473. doi: 10.1016/j.electacta.2007.06.069 Google Scholar
  107. 107.
    Arends JBA, Blondeel E, Tennison SR, Boon N, Verstraete W (2012) Suitability of granular carbon as an anode material for sediment microbial fuel cells. J Soils Sediments 12(7):1197–1206. doi: 10.1007/s11368-012-0537-6 Google Scholar
  108. 108.
    Hong SW, Chang IS, Choi YS, Kim BH, Chung TH (2009) Responses from freshwater sediment during electricity generation using microbial fuel cells. Bioprocess Biosyst Eng 32(3):389–395. doi: 10.1007/s00449-008-0258-9 Google Scholar
  109. 109.
    Dumas C, Mollica A, Feron D, Basseguy R, Etcheverry L, Bergel A (2008) Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresour Technol 99(18):8887–8894. doi: 10.1016/j.biortech.2008.04.054 Google Scholar
  110. 110.
    Wang A, Cheng H, Ren N, Cui D, Lin N, Wu W (2012) Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Front Environ Sci Eng 6(4):569–574. doi: 10.1007/s11783-011-0335-1 Google Scholar
  111. 111.
    Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011) Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J Power Sources 196(3):1171–1177. doi: 10.1016/j.jpowsour.2010.08.099 Google Scholar
  112. 112.
    Donovan C, Dewan A, Heo D, Lewandowski Z, Beyenal H (2013) Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J Power Sources 233:79–85. doi: 10.1016/j.jpowsour.2012.12.112 Google Scholar
  113. 113.
    Gong Y, Radachowsky SE, Wolf M, Nielsen ME, Girguis PR, Reimers CE (2011) Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ Sci Technol 45(11):5047–5053. doi: 10.1021/es104383q Google Scholar
  114. 114.
    Zhang F, Tian L, He Z (2011) Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J Power Sources 196(22):9568–9573. doi: 10.1016/j.jpowsour.2011.07.037 Google Scholar
  115. 115.
    Thomas YRJ, Picot M, Carer A, Berder O, Sentieys O, Barriere F (2013) A single sediment-microbial fuel cell powering a wireless telecommunication system. J Power Sources 241:703–708. doi: 10.1016/j.jpowsour.2013.05.016 Google Scholar
  116. 116.
    Hsu L, Chadwick B, Kagan J, Thacher R, Wotawa-Bergen A, Richter K (2013) Scale up considerations for sediment microbial fuel cells. RSC Adv 3(36):15947–15954. doi: 10.1039/c3ra43180k Google Scholar
  117. 117.
    Helder M, Strik DPBTB, Hamelers HVM, Kuhn AJ, Blok C, Buisman CJN (2010) Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol 101(10):3541–3547. doi: 10.1016/j.biortech.2009.12.124 Google Scholar
  118. 118.
    Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN (2010) Long-term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol 86(3):973–981. doi: 10.1007/s00253-010-2440-7 Google Scholar
  119. 119.
    Timmers RA, Rothballer M, Strik DPBTB, Engel M, Schulz S, Schloter M, Hartmann A, Hamelers B, Buisman C (2012) Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Appl Microbiol Biotechnol 94(2):537–548. doi: 10.1007/s00253-012-3894-6 Google Scholar
  120. 120.
    Helder M, Chen W-S, van der Harst EJM, Strik DPBTB, Hamelers HVM, Buisman CJN, Potting J (2013) Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell. Biofuels Bioprod Biorefin Biofpr 7(1):52–64. doi: 10.1002/bbb.1373 Google Scholar
  121. 121.
    Helder M, Strik DPBTB, Timmers RA, Raes SMT, Hamelers HVM, Buisman CJN (2013) Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass Bioenergy 51:1–7. doi: 10.1016/j.biombioe.2012.10.011 Google Scholar
  122. 122.
    Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN (2013) Electricity generation by a novel design tubular plant microbial fuel cell. Biomass Bioenergy 51:60–67. doi: 10.1016/j.biombioe.2013.01.002 Google Scholar
  123. 123.
    Liu S, Song H, Li X, Yang F (2013) Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int J Photoenergy. doi: 10.1155/2013/172010 Google Scholar
  124. 124.
    Mohan SV, Mohanakrishna G, Chiranjeevi P (2011) Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresour Technol 102(14):7036–7042. doi: 10.1016/j.biortech.2011.04.033 Google Scholar
  125. 125.
    Chiranjeevi P, Chandra R, Mohan SV (2013) Ecologically engineered submerged and emergent macrophyte based system: an integrated eco-electrogenic design for harnessing power with simultaneous wastewater treatment. Ecol Eng 51:181–190. doi: 10.1016/j.ecoleng.2012.12.014 Google Scholar
  126. 126.
    Chen Z, Y-c H, J-h L, Zhao F, Y-g Z (2012) A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour Technol 108:55–59. doi: 10.1016/j.biortech.2011.10.040 Google Scholar
  127. 127.
    Yadav AK (2010) Design and development of novel constructed wetland cum microbial fuel cell for electricity production and wastewater treatment. In: Paper presented at the 12th international conference on wetlands systems for water pollution control. International Water Association, Venice, ItalyGoogle Scholar
  128. 128.
    Zhao Y, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y (2013) Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chem Eng J 229:364–370. doi: 10.1016/j.cej.2013.06.023 Google Scholar
  129. 129.
    Fang Z, Song H-L, Cang N, Li X-N (2013) Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol 144:165–171. doi: 10.1016/j.biortech.2013.06.073 Google Scholar
  130. 130.
    Yadav AK, Dash P, Mohanty A, Abbassi R, Mishra BK (2012) Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol Eng 47:126–131. doi: 10.1016/j.ecoleng.2012.06.029 Google Scholar
  131. 131.
    Villasenor J, Capilla P, Rodrigo MA, Canizares P, Fernandez FJ (2013) Operation of a horizontal subsurface flow constructed wetland - microbial fuel cell treating wastewater under different organic loading rates. Water Res 47(17):6731–6738. doi: 10.1016/j.watres.2013.09.005 Google Scholar
  132. 132.
    Kruzic AP, Kreissl JF (2009) Natural treatment and onsite systems. Water Environ Res 81(10):1346–1360. doi: 10.2175/106143009x12445568399659 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • F. J. Fernández
    • 1
  • J. Lobato
    • 1
  • J. Villaseñor
    • 1
  • M. A. Rodrigo
    • 1
    Email author
  • P. Cañizares
    • 1
  1. 1.Department of Chemical EngineeringUniversity of Castilla La ManchaCiudad RealSpain

Personalised recommendations