The Role of Earthworms in Mercury Pollution Soil Assessment

  • Rosa Carmen Rodríguez Martín-DoimeadiósEmail author
  • Francisco Javier Guzmán Bernardo
  • Nuria Rodríguez Fariñas
  • María Jiménez Moreno
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)


Mercury (Hg) is a global pollutant with different highly toxic chemical forms that can be bioaccumulated and biomagnified. Up to now most studies on Hg pollution have focused on aquatic ecosystems, and this is why little information about Hg in terrestrial ecosystems is currently available. However, the impact of Hg pollution on the terrestrial environment and food chain is of great interest for its human health implications. In this context, earthworms, which constitute a major component in soil ecosystems and act as a food source for a wide variety of organisms, are an excellent option to study Hg biochemistry in terrestrial ecosystems. The use of earthworms as bioindicators of Hg soil pollution involves a wide number of variables to be considered since the metal–biota interaction is very complicated in this case. Therefore, the aim of this chapter is to review the role of earthworms as bioindicators of Hg pollution in soils.


Bioaccumulation Biomarkers Earthworms Mercury Methylation Soils 


  1. 1.
    Bank MS (2012) Mercury in the environment: pattern and process, 1st edn. University of California Press, CaliforniaCrossRefGoogle Scholar
  2. 2.
    Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C (2004) Global source attribution for mercury deposition in the united states. Environ Sci Technol 38(2):555–569CrossRefGoogle Scholar
  3. 3.
    Swartzendruber P, Jaffe D (2012) Sources and transport: a global issue. In: Bank MS (ed) Mercury in the environment: pattern and process. University of California Press, California, pp 3–18CrossRefGoogle Scholar
  4. 4.
    Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662CrossRefGoogle Scholar
  5. 5.
    USEPA (2001) Water quality criterion for the protection of human health: methylmercury. United States Environmental Protection Agency, WashingtonGoogle Scholar
  6. 6.
    EU (2006) Setting maximum levels for certain contaminants in foodstuffs. Commission Regulation no. 1881/2006. Offi J Eur UnionGoogle Scholar
  7. 7.
    WHO (2011) Evaluation of certain food additives and contaminants. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. World Health OrganizationGoogle Scholar
  8. 8.
    Hintelmann H (2010) Organomercurials. Their formation and pathways in the environment. Met Ions Life Sci 7:365–401CrossRefGoogle Scholar
  9. 9.
    UNEP (2013) Minamata convention on mercury. United Nations Environment Programme.
  10. 10.
    Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57(1):39–47CrossRefGoogle Scholar
  11. 11.
    Lionetto MG, Calisi A, Schettino T (2012) Earthworms biomarkers as tools for soil pollution assessment. Soil Health Land Use Manage 305–332Google Scholar
  12. 12.
    Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and availability in soil? - a review. Environ Pollut 157(7):1981–1989CrossRefGoogle Scholar
  13. 13.
    Fruend H-C, Butt K, Capowiez Y, Eisenhauer N, Emmerling C, Ernst G, Potthoff M, Schaedler M, Schrader S (2010) Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiol 53(2):119–125. doi: 10.1016/j.pedobi.2009.07.002 CrossRefGoogle Scholar
  14. 14.
    Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, Ottesen R-T, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, (2005) Geochemical atlas of europe, part 1, background information, methodology and maps, vol 1. FOREGSGoogle Scholar
  15. 15.
    Teršič T, Gosar M, Biester H (2011) Distribution and speciation of mercury in soil in the area of an ancient mercury ore roasting site, Frbejžene trate (Idrija area, Slovenia). J Geochem Explor 110(2):136–145. Scholar
  16. 16.
    Teršič T, Gosar M (2012) Comparison of elemental contents in earthworm cast and soil from a mercury-contaminated site (Idrija area, Slovenia). Sci Total Environ 430(0):28–33.
  17. 17.
    EAW (2002) Soil guideline values for inorganic mercury contamination. Environment agency of England and Wales. R&D Publication, SwindonGoogle Scholar
  18. 18.
    CEAA (1995) Toxicity testing of national contaminated sites remediation program priority substances for the development of soil quality guidelines for contaminated sites. Evaluation and interpretation branch, guidelines division. Canadian Environmental Assessment Agency - Environment Canada, OttawaGoogle Scholar
  19. 19.
    Meili M (1991) The coupling of mercury and organic-matter in the biogeochemical cycle - towards a mechanistic model for the boreal forest zone. Water Air Soil Pollut 56:333–347. doi: 10.1007/bf00342281 CrossRefGoogle Scholar
  20. 20.
    Tipping E, Lofts S, Hooper H, Frey B, Spurgeon D, Syendsen C (2010) Critical Limits for Hg(II) in soils, derived from chronic toxicity data. Environ Pollut 158(7):2465–2471. doi: 10.1016/j.envpol.2010.03.027 CrossRefGoogle Scholar
  21. 21.
    Ravichandran M (2004) Interactions between mercury and dissolved organic matter––a review. Chemosphere 55(3):319–331. Scholar
  22. 22.
    de Vries W, Lofts S, Tipping E, Meili M, Groenenberg JE, Schütze G (2007) Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects. Rev Environ Contam Toxicol 191:42. doi: 10.1007/978-0-387-69163-3_3 Google Scholar
  23. 23.
    Ernst G, Zimmermann S, Christie P, Frey B (2008) Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Environ Pollut 156(3):1304–1313. doi: 10.1016/j.envpol.2008.03.002 CrossRefGoogle Scholar
  24. 24.
    Burton DT, Turley SD, Fisher DJ, Green DJ, Shedd TR (2006) Bioaccumulation of total mercury and monomethylmercury in the earthworm Eisenia fetida. Water Air Soil Pollut 170(1–4):37–54. doi: 10.1007/s11270-006-3113-0 CrossRefGoogle Scholar
  25. 25.
    Zagury GJ, Neculita C-M, Bastien C, Deschênes L (2006) Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants. Environ Toxicol Chem 25(4):1138–1147. doi: 10.1897/05-302r.1 CrossRefGoogle Scholar
  26. 26.
    Nahmani J, Hodson ME, Black S (2007) A review of studies performed to assess metal uptake by earthworms. Environ Pollut 145(2):402–424. doi: 10.1016/j.envpol.2006.04.009 CrossRefGoogle Scholar
  27. 27.
    Rieder SR, Brunner I, Horvat M, Jacobs A, Frey B (2011) Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environ Pollut 159(10):2861–2869CrossRefGoogle Scholar
  28. 28.
    Zhang ZS, Zheng DM, Wang QC, Lv XG (2009) Bioaccumulation of total and methyl mercury in three earthworm species (Drawida sp., Allolobophora sp., and Limnodrilus sp.). Bull Environ Contam Toxicol 83(6):937–942. doi: 10.1007/s00128-009-9872-8 CrossRefGoogle Scholar
  29. 29.
    Hinton JJ, Veiga MM (2009) Using earthworms to assess Hg distribution and bioavailability in gold mining soils. Soil Sedim Contam 18(4):512–524. doi: 10.1080/15320380902978847 CrossRefGoogle Scholar
  30. 30.
    van Straalen NM, Donker MH, Vijver MG, van Gestel CAM (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136(3):409–417. Scholar
  31. 31.
    ASTM (1999) Standard guide for conducting a laboratory soil toxicity test with the lumbricid earthworm Eisenia foetida. Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia, PAGoogle Scholar
  32. 32.
    OECD (2004) Test No. 222: earthworm reproduction test (Eisenia fetida/Eisenia andrei). OECD Guidelines for testing of chemicals. OECD Publishing, ParisGoogle Scholar
  33. 33.
    ISO (1993) Soil quality-effects of pollutants on earthworms (Eisenia fetida). Part 1: determination of acute toxicity using artificial soil substrate, vol 11268–1. International Organization for Standardization, GeneveGoogle Scholar
  34. 34.
    ISO (1998) Soil quality- effects of pollutants on earthworms (Eisenia fetida). Part 2: determination of effects on reproduction, vol 11268–2. International Organization for Standardization, GeneveGoogle Scholar
  35. 35.
    ISO (2006) Soil quality-sampling of soil invertebrates (I): hand-sorting and formalin extraction of earthworms. International Organization for Standardization, GenevaGoogle Scholar
  36. 36.
    Gudbrandsen M, Sverdrup LE, Aamodt S, Stenersen J (2007) Short-term pre-exposure increases earthworm tolerance to mercury. Eur J Soil Biol 43(Suppl 1):S261–S267CrossRefGoogle Scholar
  37. 37.
    Lock K, Janssen C (2001) Ecotoxicity of mercury to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Biol Fertil Soils 34(4):219–221. doi: 10.1007/s003740100392 CrossRefGoogle Scholar
  38. 38.
    Kammenga JE, Dallinger R, Donker MH, Köhler HR, Simonsen V, Triebskorn R, Weeks JM (2000) Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Rev Environ Contam Toxicol 164:93–147Google Scholar
  39. 39.
    Scott-Fordsmand JJ, Weeks JM (2000) Biomarkers in earthworms. Rev Environ Contam Toxicol 165:117–159Google Scholar
  40. 40.
    Sanchez-Hernandez JC (2006) Earthworm biomarkers in ecological risk assessment. Rev Environ Contam Toxicol 188:85–126Google Scholar
  41. 41.
    Rodríguez-Castellanos L, Sanchez-Hernandez JC (2007) Earthworm biomarkers of pesticide contamination: current status and perspectives. J Pestic Sci 32(4):360–371CrossRefGoogle Scholar
  42. 42.
    Fugère N, Brousseau P, Krzystyniak K, Coderre D, Fournier M (1996) Heavy metal-specific inhibition of phagocytosis and different in vitro sensitivity of heterogeneous coelomocytes from Lumbricus terrestris (Oligochaeta). Toxicology 109(2–3):157–166CrossRefGoogle Scholar
  43. 43.
    Svendsen C, Hankard PK, Lister LJ, Fishwick SK, Jonker MJ, Spurgeon DJ (2007) Effect of temperature and season on reproduction, neutral red retention and metallothionein responses of earthworms exposed to metals in field soils. Environ Pollut 147(1):83–93CrossRefGoogle Scholar
  44. 44.
    Calisi A, Lionetto MG, Sanchez-Hernandez JC, Schettino T (2011) Effect of heavy metal exposure on blood haemoglobin concentration and methemoglobin percentage in Lumbricus terrestris. Ecotoxicology 20(4):847–854CrossRefGoogle Scholar
  45. 45.
    Colacevich A, Sierra MJ, Borghini F, Milian R, Sanchez-Hernandez JC (2011) Oxidative stress in earthworms short- and long-term exposed to highly Hg-contaminated soils. J Hazard Mater 194:135–143. doi: 10.1016/j.jhazmat.2011.07.091 CrossRefGoogle Scholar
  46. 46.
    Calisi A, Zaccarelli N, Lionetto MG, Schettino T (2013) Integrated biomarker analysis in the earthworm Lumbricus terrestris: application to the monitoring of soil heavy metal pollution. Chemosphere 90(11):2637–2644. Scholar
  47. 47.
    Berzas Nevado JJ, Rodríguez Martin-Doimeadios RC, Guzman Bernardo FJ, Rodriguez Alvarez C (2014) Determination of total glutathione in earthworms by ultra-high performance liquid chromatography with fluorescence detection. Analyt Method. doi: 10.1039/c4ay00085d Google Scholar
  48. 48.
    OECD (1984) Test No. 207: earthworm, acute toxicity tests. OECD guidelines for the testing of chemicals. OECD Publishing, ParisGoogle Scholar
  49. 49.
    Calisi A, Lionetto MG, Schettino T (2009) Pollutant-induced alterations of granulocyte morphology in the earthworm Eisenia foetida. Ecotoxicol Environ Saf 72(5):1369–1377CrossRefGoogle Scholar
  50. 50.
    Calisi A, Lionetto MG, Schettino T (2011) Biomarker response in the earthworm Lumbricus terrestris exposed to chemical pollutants. Sci Total Environ 409(20):4456–4464CrossRefGoogle Scholar
  51. 51.
    Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T (2013) Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed Res Int 2013:1–8. doi: 10.1155/2013/321213 CrossRefGoogle Scholar
  52. 52.
    Frasco MF, Colletier JP, Weik M, Carvalho F, Guilhermino L, Stojan J, Fournier D (2007) Mechanisms of cholinesterase inhibition by inorganic mercury. FEBS J 274(7):1849–1861CrossRefGoogle Scholar
  53. 53.
    Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21(6):1316–1322CrossRefGoogle Scholar
  54. 54.
    Hinton JJ, Veiga JM (2008) The influence of organic acids on mercury bioavailability: insight from an earthworm assessment protocol. Environ Bioindicat 3:47–67CrossRefGoogle Scholar
  55. 55.
    Rieder SR, Brunner I, Daniel O, Liu B, Frey B (2013) Methylation of mercury in earthworms and the effect of mercury on the associated bacterial communities. PLoS One 8(4). 10.1371/journal.pone.0061215Google Scholar
  56. 56.
    Kaschak E, Knopf B, Petersen JH, Bings NH, König H (2014) Biotic methylation of mercury by intestinal and sulfate-reducing bacteria and their potential role in mercury accumulation in the tissue of the soil-living Eisenia foetida. Soil Biol Biochem 69(0):202–211. Scholar
  57. 57.
    Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189CrossRefGoogle Scholar
  58. 58.
    Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77(12):3938–3951CrossRefGoogle Scholar
  59. 59.
    Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339(6125):1332–1335CrossRefGoogle Scholar
  60. 60.
    Dröge S, Limper U, Emtiazi F, Schönig I, Pavlus N, Drzyzga O, Fischer U, König H (2005) In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J Gen Appl Microbiol 51(2):57–64CrossRefGoogle Scholar
  61. 61.
    Limper U, Knopf B, König H (2008) Production of methyl mercury in the gut of the Australian termite Mastotermes darwiniensis. J Appl Entomol 132(2):168–176CrossRefGoogle Scholar
  62. 62.
    Gnamus A, Byrne AR, Horvat M (2000) Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ Sci Tech 34(16):3337–3345. doi: 10.1021/es991419w CrossRefGoogle Scholar
  63. 63.
    Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320(5874):335. doi: 10.1126/science.1154082 CrossRefGoogle Scholar
  64. 64.
    Berzas Nevado JJ, Rodríguez Martin-Doimeadios RC, Mateo R, Rodríguez Fariñas N, Rodriguez-Estival J, Patiño Ropero MJ (2012) Mercury exposure and mechanism of response in large game using the Almaden mercury mining area (Spain) as a case study. Environ Res 112:58–66. doi: 10.1016/j.envres.2011.09.019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rosa Carmen Rodríguez Martín-Doimeadiós
    • 1
    Email author
  • Francisco Javier Guzmán Bernardo
    • 1
  • Nuria Rodríguez Fariñas
    • 1
  • María Jiménez Moreno
    • 1
  1. 1.Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and BiochemistryUniversity of Castilla-La ManchaToledoSpain

Personalised recommendations