Advertisement

The OASIS Observatory Using Ground-Based Solar Absorption Fourier-Transform Infrared Spectroscopy in the Suburbs of Paris (Créteil-France)

  • P. ChelinEmail author
  • C. Viatte
  • M. Ray
  • M. Eremenko
  • J. Cuesta
  • F. Hase
  • J. Orphal
  • J.-M. Flaud
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)

Abstract

Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy has led to a number of significant advances in our understanding of the atmosphere by providing information on the vertical distribution of various trace gases. Previously used to analyse solar absorption spectra measured at high-resolution in unpolluted sites, the retrieval code PROFFIT has been adapted to deal with spectra recorded at medium spectral resolution with a Bruker Optics Vertex 80 FTIR spectrometer. As one of the major instruments of the experimental observatory named OASIS (Observations of the Atmosphere by Solar Infrared Spectroscopy), this instrument is dedicated to the study of air composition in the suburbs of Paris. Accurate measurements of the most important atmospheric pollutants are indeed essential to improve the understanding and modelling of urban air pollution processes. Located in an urban region, OASIS enables to monitor key pollutants such as NOx, O3, CO and VOCs. In this chapter, 5 years intercomparison study with on-ground and satellite measurements for O3 and CO is reported, demonstrating the performances of a medium-resolution ground-based instrument and especially confirming its capability for tropospheric ozone monitoring.

Keywords

Air quality in megacity Carbon monoxide IR spectroscopy Ozone Remote sensing Solar occultation 

Abbreviations

DOAS

Differential optical absorption spectroscopy

DOF

Degrees of freedom

DTGS

Deuterated triglycine sulphate

DU

Dobson unit

EOS

Earth observing system

ESA

European Space Agency

FTIR

Fourier-transform infrared

GOME-2

Global Ozone Monitoring Experiment-2

HITRAN

High-resolution transmission molecular absorption database

IASI

Infrared Atmospheric Sounder Interferometer

ILS

Instrumental line shape

IR

Infrared

LAN

Local area network

MetOp

Meteorological operational polar satellite

MIPAS

Michelson Interferometer for Passive Atmospheric Sounding

MOPITT

Measurements of Pollution in the Troposphere

MOZAIC

Measurements of ozone and water vapour by in-service airbus aircraft programme

MRD

Mean relative difference

NASA

National Aeronautics and Space Administration

NCEP

National Centers for Environment Prediction

NDACC

Network for the Detection of Atmospheric Composition Change

OASIS

Observations of the atmosphere by solar infrared spectroscopy

OMI

Ozone Monitoring Instrument

SAOZ

Système d’Analyse par Observation Zénithale

TCCON

Total Carbon Column Observing Network

TOMS

Total Ozone Mapping Spectrometer

Notes

Acknowledgements

The authors wish to thank F. Goutail for SAOZV2 data, AirParif for in situ data, the NASA Goddard Space Flight Center for providing the temperature and pressure profiles of the National Centers for Environmental Prediction (NCEP). The ETHER French atmospheric database (http://ether.ipsl.jussieu.fr) is acknowledged for providing the IASI data. We are also grateful to the European Centre for Medium-Range Weather Forecasts (ECMWF), the Global Monitoring for Environment and Security (GMES) and the Monitoring of the Atmospheric Composition and Climate (MACC) project for supplying data. Acknowledgements are addressed to the University of Paris-Est Créteil for their technical support during all phases of the OASIS observatory installation.

References

  1. 1.
    Brasseur GP, Solomon S (2005) Aeronomy of the middle atmosphere. Springer, DordrechtGoogle Scholar
  2. 2.
    Finlayson-Pitts BJ, Pitts JN (1999) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic, San DiegoGoogle Scholar
  3. 3.
    West JJ, Szopa S, Hauglustaine DA (2007) Human mortality effects of future concentrations of tropospheric ozone. C R Geosci 339:775–783CrossRefGoogle Scholar
  4. 4.
    Felzer BS, Cronin T, Reilly JM et al (2007) Impacts of ozone on trees and drops. C R Geosci 339:784–798CrossRefGoogle Scholar
  5. 5.
    de Forster PM, Shine KP (1997) Radiative forcing and temperature trends from stratospheric ozone changes. J Geophys Res 102:10841–10855CrossRefGoogle Scholar
  6. 6.
    Aghedo AM, Bowman KW, Worden HM et al (2011) The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models. J Geophys Res. doi: 10.1029/2010JD014243 Google Scholar
  7. 7.
    Riese M, Ploeger F, Rap A et al (2012) Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. J Geophys Res. doi: 10.1029/2012JD017751 Google Scholar
  8. 8.
    Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New YorkGoogle Scholar
  9. 9.
    Viatte C, Gaubert B, Eremenko M et al (2011) Tropospheric and total ozone columns over Paris (France) measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy. Atmos Measure Tech 4:2323–2331CrossRefGoogle Scholar
  10. 10.
    Hase F (2012) Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the network for the detection of atmospheric composition change. Atmos Measure Tech 5:603–610CrossRefGoogle Scholar
  11. 11.
    Hase F, Blumenstock T, Paton-Walsh C (1999) Analysis of the instrumental line shape of high-resolution fourier transform IR spectrometers with gas cell measurements and new retrieval software. Appl Optics 38:3417–3422CrossRefGoogle Scholar
  12. 12.
    Hase F, Hannigan JW, Coffey MT et al (2004) Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. J Quant Spectrosc Rad Trans 87:25–52CrossRefGoogle Scholar
  13. 13.
    Flaud JM, Orphal J (2011) Spectroscopy of the earth’s atmosphere. In: Quack M (ed) Handbook of high-resolution spectroscopy. Wiley, London, p 1971Google Scholar
  14. 14.
    Rothman LS, Jacquemart D, Barbe A et al (2005) The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Rad Trans 96:139–204CrossRefGoogle Scholar
  15. 15.
    Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Sci, Hackensack, NJCrossRefGoogle Scholar
  16. 16.
    Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4:1035–1038 English translation of. Dokl Akad Nauk SSSR 151:501–504Google Scholar
  17. 17.
    McPeters RD, Kroon M, Labow G et al (2008) Validation of the aura ozone monitoring instrument total column ozone product. J Geophys Res. doi: 10.1029/2007JD008802 Google Scholar
  18. 18.
    Remedios JJ, Leigh RJ, Waterfall AM et al (2007) MIPAS reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2 geophysical data sets. Atmos Chem Phys Discuss 7:9973–10017CrossRefGoogle Scholar
  19. 19.
    Schneider M, Hase F, Blumenstock T et al (2008) Quality assessment of O3 profiles measured by a state-of-the-art ground-based FTIR observing system. Atmos Chem Phys 8:5579–5588CrossRefGoogle Scholar
  20. 20.
    Vigouroux C, De Mazière M, Demoulin P et al (2008) Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations. Atmos Chem Phys 8:6865–6886CrossRefGoogle Scholar
  21. 21.
    Antón M, López M, Serrano A et al (2010) Diurnal variability of total ozone column over Madrid (Spain). Atmos Environ 44:2793–2798CrossRefGoogle Scholar
  22. 22.
    Cortesi U, Lambert JC, De Clercq C et al (2007) Geophysical validation of MIPAS-ENVISAT ozone data. Atmos Chem Phys 7:1–61CrossRefGoogle Scholar
  23. 23.
    Dupuy E, Walker KA, Kar J et al (2009) Validation of ozone measurements from the atmospheric chemistry experiment (ACE). Atmos Chem Phys 9:287–343CrossRefGoogle Scholar
  24. 24.
    Nassar R, Logan JA, Worden HM et al (2008) Validation of tropospheric emission spectrometer (TES) nadir ozone profiles using ozone sonde measurements. J Geophys Res. doi: 10.1029/2007JD008819 Google Scholar
  25. 25.
    Keim C, Eremenko M, Orphal J et al (2009) Tropospheric ozone from IASI: comparison of different inversion algorithms and validation with ozone sondes in the northern middle latitudes. Atmos Chem Phys 9:11441–11479CrossRefGoogle Scholar
  26. 26.
    Dobson GMB, Harrison DN, Lawrence J (1929) Measurements of the amount of ozone in the earth’s atmosphere and it’s relation to other geophysical conditions. Part III Proc R Soc Lond A122:456–486CrossRefGoogle Scholar
  27. 27.
    Clerbaux C, Hadji-Lazaro J, Turquety S et al (2007) The IASI/MetOp mission: first observations and highlights of its potential contribution to GMES. Space Res Today (COSPAR Inf Bul) 168:19–24CrossRefGoogle Scholar
  28. 28.
    Clerbaux C, Boynard A, Clarisse L et al (2009) Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos Chem Phys 9:6041–6054CrossRefGoogle Scholar
  29. 29.
    Eremenko M, Dufour G, Foret G et al (2008) Tropospheric ozone distributions over Europe during the heat wave in July 2007 observed from infrared nadir spectra recorded by IASI. Geophys Res Lett. doi: 10.1029/2008GL034803 Google Scholar
  30. 30.
    Levelt PF (2002) OMI algorithm theoretical basis document, vol. I, OMI instrument, Level0–1b processor, calibration and operations. http://eospso.gsfc.nasa.gov/eoshomepage/forscientists/atbd/docs/OMI/ATBD-OMI-01.pdf. Accessed 11 Mar 2011
  31. 31.
    Bhartia PK, Wellemeyer CW (2002) OMI TOMS-V8 total O3 algorithm, algorithm theoretical baseline document: OMI ozone products, vol. II, ATBD-OMI-02, version 2.0. http://eospso.gsfc.nasa.gov/eoshomepage/forscientists/atbd/docs/OMI/ATBD-OMI-02.pdf. Accessed 11 Mar 2011
  32. 32.
    Veefkind JP, de Haan JF, Brinksma EJ et al (2006) Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique. IEEE T Geosci Remote 44:1239–1244CrossRefGoogle Scholar
  33. 33.
    Balis D, Kroon M, Koukouli ME et al (2007) Validation of ozone monitoring instrument total ozone column measurements using brewer and Dobson spectrophotometer ground-based observations. J Geophys Res. doi: 10.1029/2007JD008796 Google Scholar
  34. 34.
    Liu X, Bhartia PK, Chance K et al (2010) Validation of ozone monitoring instrument (OMI) ozone profiles and stratospheric ozone columns with microwave limb sounder (MLS) measurements. Atmos Chem Phys 10:2539–2549CrossRefGoogle Scholar
  35. 35.
    Kroon M, Petropavlovskikh I, Shetter R et al (2008) OMI total ozone column validation with Aura-AVE CAFS observations. J Geophys Res. doi: 10.1029/2007JD008795 Google Scholar
  36. 36.
    Platt U (1994) Differential optical absorption spectroscopy (DOAS) in: air monitoring by spectroscopic techniques. Wiley, New York, p 8427Google Scholar
  37. 37.
    Van Roozendael M, Loyola D, Spurr RJD et al (2006) Reprocessing the 10-year GOME/ERS-2 total ozone record for trend analysis: the new GOME data processor version 4.0, algorithm description. J Geophys Res. doi: 10.1029/2005JD006375 Google Scholar
  38. 38.
    Balis D, Lambert JC, Van Roozendael M et al (2007) Ten years of GOME/ERS2 total ozone data the new GOME data processor (GDP) version 4.2: ground-based validation and comparisons with TOMS V7/V8. J Geophys Res. doi: 10.1029/2005JD006376 Google Scholar
  39. 39.
    Van Roozendael M, Lambert JC, Spurr RJD et al (2004) GOME direct fitting (GODFIT) GDOAS delta validation report. ERS Exploitation AO/1-4235/02/I-LG, Oberpfaffenhofen, GermanyGoogle Scholar
  40. 40.
    Viatte C, Schneider M, Redondas A et al (2011) Comparison of ground-based FTIR and Brewer O3 total column with data from two different IASI algorithms and from OMI and GOME-2 satellite instruments. Atmos Measure Tech 4:535–546CrossRefGoogle Scholar
  41. 41.
    Gratien A, Picquet-Varrault B, Orphal J (2010) New laboratory intercomparison of the ozone absorption coefficients in the mid-infrared (10 μm) and ultraviolet (300–350 nm) spectral regions. J Phys Chem A 14:10045–10048CrossRefGoogle Scholar
  42. 42.
    Picquet-Varrault B, Orphal J, Doussin JF et al (2005) Laboratory intercomparison of the ozone absorption coefficients in the mid-infrared (10 μm) and ultraviolet (300–350 nm) spectral regions. J Phys Chem A 109:1008–1014CrossRefGoogle Scholar
  43. 43.
    Pommereau JP, Goutail F (1988) O3 and NO2 ground-based measurements by visible spectrometry during arctic winter and spring 1988. Geophys Res Lett 15:891–894CrossRefGoogle Scholar
  44. 44.
    Hendrick F, Pommereau JP, Goutail F et al (2011) NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations. Atmos Chem Phys 11:5975–5995CrossRefGoogle Scholar
  45. 45.
    Marenco A, Thouret V, Nédélec P et al (1988) Measurement of ozone and water vapor by Airbus in-service aircraft: the MOZAIC airborne program, an overview. J Geophys Res 103:631–642Google Scholar
  46. 46.
    Zbinden RM, Thouret V, Ricaud P et al (2013) Climatology of pure tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC in the mid-northern latitudes (24° N to 50° N) from 1994 to 2009. Atmos Chem Phys Discuss 13:14695–14747CrossRefGoogle Scholar
  47. 47.
    Dufour G, Eremenko M, Orphal J et al (2010) IASI observations of seasonal and day-to-day variations of tropospheric ozone over three highly populated areas of China: Beijing, Shanghai, and Hong Kong. Atmos Chem Phys 10:3787–3801CrossRefGoogle Scholar
  48. 48.
    Schmidt H, Derognat C, Vautard R et al (2001) A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in western Europe. Atmos Environ 35:6277–6297CrossRefGoogle Scholar
  49. 49.
    Lamsal LN, Martin RV, Padmanabhan A et al (2011) Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys Res Lett. doi: 10.1029/2010GL046476 Google Scholar
  50. 50.
    Barret B, De Mazière M, Mahieu E (2003) Ground-based FTIR measurements of CO from the Jungfraujoch: characterisation and comparison with in situ surface and MOPITT data. Atmos Chem Phys 3:2217–2223CrossRefGoogle Scholar
  51. 51.
    Wunch D, Toon GC, Blavier JFL et al (2011) The total carbon column observing network. Phil Trans Roy Soc A 369:2087–2112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Chelin
    • 1
    Email author
  • C. Viatte
    • 1
    • 2
  • M. Ray
    • 1
  • M. Eremenko
    • 1
  • J. Cuesta
    • 1
  • F. Hase
    • 3
  • J. Orphal
    • 1
    • 3
  • J.-M. Flaud
    • 1
  1. 1.Laboratoire Inter-Universitaire des Systèmes Atmosphériques (LISA) CNRS UMR 7583Université Paris-Est Créteil, Université Paris Diderot, Institut Pierre-Simon LaplaceCréteil CedexFrance
  2. 2.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Institute for Meteorology and Climate Research (IMK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations