Advertisement

Preventing Indoor Bioaerosol Contamination in Food Processing Environments and HVAC Systems: Assessment of Particle Deposition for Hygienic Design Purposes

  • Guillaume DaEmail author
  • Evelyne Géhin
  • Michel Havet
  • Mourad Ben Othmane
  • Camille Solliec
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)

Abstract

This chapter deals with airborne particle contamination in food processing indoor environments and particularly within heating, ventilation, and air-conditioning (HVAC) systems in food factory buildings. The major types of bioaerosols encountered in the food manufacturing sector as well as the bioaerosol sampling methods are firstly introduced. Secondly, some features of air handling systems such as zoning, cleanrooms, localized air handling systems, and HVAC systems are presented. Besides, the study of particle deposition to duct surfaces from turbulent airflow is reviewed and discussed. Substantially, an original work combining industrial diagnosis and experiments at factory scale with experiments at laboratory scale is then proposed through the case study of the CleanAirNet project. The CleanAirNet project (Hygienic Design of Ventilation Duct Networks in Food Factories) aimed at producing new knowledge, models, and techniques to help control the safety of the food products through a better control of aerosol particle transport and deposition in the ventilation networks of the food industry. The different work packages of the project are presented relatively to the state-of-the-art particle deposition on duct surfaces. The methodological findings and relevant applications (e.g., a newly patented particle trapping device for air handling systems) for food industries are exposed. The CleanAirNet project was supported by the French National Research Agency (ANR) from 2008 to 2012; the project consortium was conducted by seven institutes and universities, as well as three industries from the food sector.

Keywords

Bioaerosols Food factories Heating ventilation and air-conditioning systems (HVAC systems) Hygienic design Indoor air quality Particle deposition Ventilation networks 

Notes

Acknowledgments

This work was conducted within the framework of the CleanAirNet project, a joint project of research groups from IRSTEA (ACTA-Rennes), GEPEA (Process Engineering Laboratory including ONIRIS and EMN in Nantes), CSTB (Laboratory of Indoor Environment Microbiology-Champs sur Marne), CERTES-Université Paris-Est (Center for Thermal and Environmental Research), ADRIA NORMANDIE (center of technological resources devoted to food industry), and LAVAL MAYENNE TECHNOPOLE (territorial agency for economic development and innovation promotion). Three industries from the food sector were taking part in the consortium. We are thankful for Dr. Amine Metani for supplying the scanning electron photographs of Aspergillus niger.

References

  1. 1.
    WHO (2010) WHO guidelines for indoor air quality: selected pollutants. World Health Organization Regional Office for Europe, CopenhagenGoogle Scholar
  2. 2.
    Lopez-Gomez A, Castano-Villar A, Palop A, Marin-Iniesta F (2013) Hygienic design and microbial control of refrigeration and Air conditioning systems for food processing and packaging plants. Food Eng Rev 5:18–35CrossRefGoogle Scholar
  3. 3.
    Burfoot D, Whyte R, Tinker D, Hall K, Allen V (2007) A novel method for assessing the role of air in the microbiological contamination of poultry carcasses. Int J Food Microbiol 115:48–52CrossRefGoogle Scholar
  4. 4.
    Havelaar A, Brul S, de Jong A, de Jong R, Zwietering M, ter Kuile B (2010) Future challenges to microbial food safety. Int J Food Microbiol 139:579–594CrossRefGoogle Scholar
  5. 5.
    Reij M, den Aantrekker E (2004) Recontamination as a source of pathogens in processed foods. Int J Food Microbiol 91:1–11CrossRefGoogle Scholar
  6. 6.
    Bluyssen P, Cox C, Seppanen O, Fernandes E, Clausen G, Muller B, Roulet C (2003) Why, when and how do HVAC-systems pollute the indoor environment and what to do about it? The European AIRLESS project. Build Environ 38:209–225CrossRefGoogle Scholar
  7. 7.
    den Aantrekker E, Boom R, Zwietering M, van Schothorst M (2003) Quantifying recontamination through factory environments – a review. Int J Food Microbiol 80:117–130CrossRefGoogle Scholar
  8. 8.
    EHEDG (2006) Guidelines on air handling in the food industry. Trends Food Sci Technol 17:331–336CrossRefGoogle Scholar
  9. 9.
    Harral B, Burfoot D (2005) A comparison of two models for predicting the movements of airborne particles from cleaning operations. J Food Eng 69:443–451CrossRefGoogle Scholar
  10. 10.
    Carrasco E, Morales-Rueda A, Garcia-Gimeno R (2012) Cross-contamination and recontamination by Salmonella in food: a review. Food Res Int 45:545–556CrossRefGoogle Scholar
  11. 11.
    Kim K, Kim H, Kim D, Nakajima J, Higuchi T (2009) Distribution characteristics of airborne bacteria and fungi in the feedstuff-manufacturing factories. J Hazard Mater 169:1054–1060CrossRefGoogle Scholar
  12. 12.
    Robine E, Dérangère D, Robin D (2000) Survival of a Pseudomonas fluorescens and Enterococcus faecalis aerosol on inert surfaces. Int J Food Microbiol 55:1–3CrossRefGoogle Scholar
  13. 13.
    Rostagno M, Callaway T (2012) Pre-harvest risk factors for Salmonella enterica in pork production. Food Res Int 45:634–640CrossRefGoogle Scholar
  14. 14.
    Zorzete P, Baquiao A, Atayde D, Reis T, Gonzales E, Correa B (2013) Mycobiota, aflatoxins and cyclopiazonic acid in stored peanut cultivars. Food Res Int 52:380–386CrossRefGoogle Scholar
  15. 15.
    Després V, Huffman J, Burrows S, Hoose C, Safatov A, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M, Pöschl U, Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B. doi: 10.3402/tellusb.v3464i3400.15598 Google Scholar
  16. 16.
    Da G, Géhin E, Ben Othmane M, Havet M, Solliec C, Motzkus C (2014) An experimental approach to measure particle deposition in large circular ventilation ducts. Environ Sci Pollut Res Int. http://link.springer.com/article/10.1007/s11356-014-2859-y
  17. 17.
    Metani A (2013) Déposition et Réenvol de Spores Fongiques. Contribution à la Compréhension du Risque Nosocomial Aérotransmis. PhD Thesis, Ecole Normale Supérieure de Lyon – Université de Lyon, Lyon, FranceGoogle Scholar
  18. 18.
    Shale K, Lues J (2007) The etiology of bioaerosols in food environments. Food Rev Int 23:73–90CrossRefGoogle Scholar
  19. 19.
    Sheehana M, Giranda J (2011) Bioaerosol generation in a food processing plant: a comparison of production and sanitation operations. Appl Occup Environ Hyg 9:346–352CrossRefGoogle Scholar
  20. 20.
    Evans J, Russell S, James C, Corry J (2004) Microbial contamination of food refrigeration equipment. J Food Eng 62:225–232CrossRefGoogle Scholar
  21. 21.
    Pearce R, Sheridan J, Bolton DJ (2005) Distribution of Airborne microorganisms in commercial pork slaughter processes. Int J Food Microbiol 107:186–191CrossRefGoogle Scholar
  22. 22.
    Perez-Rodriguez F, Valero A, Carrasco E, Garcia R, Zurera G (2008) Understanding modelling bacterial transfer to foods : a review. Trends Food Sci Technol 19:131–144CrossRefGoogle Scholar
  23. 23.
    den Aantrekker E, Beumer R, van Gerwen S, Zwietering M, van Schothorst M, Boom R (2003) Estimating the probability of recontamination via the air using Monte Carlo simulations. Int J Food Microbiol 87:1–15CrossRefGoogle Scholar
  24. 24.
    Koopmans M, Duizer E (2004) Foodborne viruses: an emerging problem. Int J Food Microbiol 90:23–41CrossRefGoogle Scholar
  25. 25.
    Skovgaard N (2007) The mycotoxin factbook. Food and feed topics. Int J Food Microbiol 116:301 (Barug D, Bhatnagar D, van Egmond HP, van der Kamp JW, van Osenbruggen WA, Visconti A (eds.), (2006) Book review)Google Scholar
  26. 26.
    Gorny R, Reponen T, Willeke K, Schmechel D, Robine E, Boissier M, Grinshpun S (2002) Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68:3522–3531CrossRefGoogle Scholar
  27. 27.
    Ge S (2014) Viral aerosol survivability, transmission, and sampling in an environmental chamber. PhD Thesis, University of Minnesota, USAGoogle Scholar
  28. 28.
    Reponen T, Willeke K, Grinshpun S, Nevalainen A (2011) Biological particle sampling. In: Kulkarni P, Baron P, Willeke K (eds) Aerosol measurement, principles, techniques, and applications, 3rd edn. Wiley, San Francisco, CA, pp 549–570CrossRefGoogle Scholar
  29. 29.
    Xu Z, Wu Y, Shen Y, Chen Q, Tan M, Yao M (2011) Bioaerosol science, technology, and engineering: past, present, and future. Aerosol Sci Technol 45:1337–1349CrossRefGoogle Scholar
  30. 30.
    Qian J, Hospodsky D, Yamamoto N, Nazaroff W, Peccia J (2012) Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22:339–351CrossRefGoogle Scholar
  31. 31.
    Bhangar S, Huffman J, Nazaroff W (2014) Size-resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. Indoor Air. doi: 10.1111/ina.12111 Google Scholar
  32. 32.
    Burfoot D, Reavell S, Tuck C, Wilkinson D (2003) Generation and dispersion of droplets from cleaning equipment used in the chilled food industry. J Food Eng 58:343–353CrossRefGoogle Scholar
  33. 33.
    Kang Y, Frak J (1990) Characteristics of biological aerosols in dairy processing plants. J Dairy Sci 73:621–626CrossRefGoogle Scholar
  34. 34.
    Byrne B, Lyn J, Dunne G, Bolton D (2008) An assessment of the microbial quality of the air within a pork processing plant. Food Contr 19:915–920CrossRefGoogle Scholar
  35. 35.
    Lopez-Gomez A, Fernandez P, Palop A, Periago P, Matrinez-Lopez A, Marin-Iniesta F, Barbosa-Canovas G (2009) Food safety engineering : an emergent perspective. Food Eng Rev 1:84–104CrossRefGoogle Scholar
  36. 36.
    ASPEC, Alloul-Marmor L (2011) Salles propres et environnements maîtrises apparentés: Etat des lieux de la normalisation. CVC 868:23–28Google Scholar
  37. 37.
    ISO (1999) ISO 14644: cleanrooms and associated controlled environments Part 1: classification of air cleanliness by particle concentration. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber = 25052
  38. 38.
    Norton T, Sun D (2006) Computational fluid dynamics (CFD) – an effective and efficient design and analysis tool for the food industry: a review. Trends Food Sci Technol 17:600–620CrossRefGoogle Scholar
  39. 39.
    Havet M, Hennequin F (1999) Experimental characterization of the ambience in a food-processing clean room. J Food Eng 39:329–335CrossRefGoogle Scholar
  40. 40.
    Rouaud O, Havet M (2005) Numerical investigation on the efficiency of transient contaminant removal from a food processing clean room using ventilation effectiveness concepts. J Food Eng 68:163–174CrossRefGoogle Scholar
  41. 41.
    Aires G, Walter E, Faria J, Roig S (2010) Restrictions to the use of cleanrooms for packaging pasteurised milk. Int J Dairy Technol 63:266–272CrossRefGoogle Scholar
  42. 42.
    Burfoot D, Brown K, Xu Y, Reavell S, Hall K (2000) Localised air delivery systems in the food industry. Trends Food Sci Technol 11:410–418CrossRefGoogle Scholar
  43. 43.
    Santa Cruz A, Coste N, Makhloufi R, Guillou S, Delboulbé D, Tiffonnet A, Marion M (2011) Airflow inside an open ventilated system: influence of operator’s arms or moving conveyor. J Food Eng 105:197–209CrossRefGoogle Scholar
  44. 44.
    Foarde K, Menetrez M (2002) Evaluating the potential efficacy of three antifungal sealants of duct liner and galvanized steel as used in HVAC systems. J Ind Microbiol Biotechnol 29:38–43CrossRefGoogle Scholar
  45. 45.
    Li A, Liu Z, Liu Y, Xu X, Pu Y (2012) Experimental study on microorganism ecological distribution and contamination mechanism in supply air ducts. Energy Build 47:497–505CrossRefGoogle Scholar
  46. 46.
    Maus R, Goppelsröder A, Umhauer H (2001) Survival of bacterial and mold spores in air filter media. Atmos Environ 35:105–113CrossRefGoogle Scholar
  47. 47.
    Zuraimi M (2010) Is ventilation duct cleaning useful? A review of the scientific evidence. Indoor Air 20:445–457CrossRefGoogle Scholar
  48. 48.
    Makarian J (2006) Steady growth predicted for biocides. Plastics Addit Comp 8:30–33Google Scholar
  49. 49.
    Zuraimi M, Magee R, Nilsson G (2012) Development and application of a protocol to evaluate impact of duct cleaning on IAQ of office buildings. Build Environ 56:86–94CrossRefGoogle Scholar
  50. 50.
    Lavoie J, Bahloul A, Cloutier Y, Gravel R (2007) Cleaning initiation criteria for heating, ventilation and air conditioning (HVAC) systems in non-industrial buildings. Paper presented at the Proceedings of Clima 2007, Helsinki, Finland, June 10–14, 2007Google Scholar
  51. 51.
    Ben Othmane M, Havet M, Géhin E, Solliec C (2010) Mechanisms of particle deposition in ventilation ducts for a food factory. Aerosol Sci Technol 44:775–784CrossRefGoogle Scholar
  52. 52.
    Arroyo G, Denis C, Ben Othmane M, Havet M, Géhin E (2010) Hygienic design of ventilation networks in food factories. Paper presented at the Food Factory 2010, 5th International Conference for Food Factory in the future, Gothenburg, Sweden, 30 June–2 July 2010Google Scholar
  53. 53.
    Denis C, Arroyo G (2011) Agroalimentaire : recueil de données microbiologiques dans les réseaux de ventilation. Salles Propres 76:40–46Google Scholar
  54. 54.
    Ben Othmane M, Havet M, Géhin E, Solliec C (2011) Predicting cleaning time of ventilation duct systems in the food industry. J Food Eng 105:400–407CrossRefGoogle Scholar
  55. 55.
    Havet M, Ben Othmane M, Géhin E, Solliec C (2012) Experimental study of particle deposition in ventilation duct systems of the food industry. Paper presented at the 10th International Conference on Industrial Ventilation, Paris, France, 17–19 September 2012Google Scholar
  56. 56.
    Sippola M (2002) Particle deposition in ventilation ducts. Unpublished PhD Thesis, University of California, Berkeley, USAGoogle Scholar
  57. 57.
    Sippola M, Nazaroff W (2002) Particle deposition from turbulent flow: review of published research and its applicability to ventilation ducts in commercial buildings. Lawrence Berkeley National Laboratory Report LBNL-51432Google Scholar
  58. 58.
    Zhao B, Wu J (2006) Modeling particle deposition from fully developed turbulent flow in ventilation duct. Atmos Environ 40:457–466CrossRefGoogle Scholar
  59. 59.
    Guha A (1997) A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. J Aerosol Sci 28:1517–1537CrossRefGoogle Scholar
  60. 60.
    Montgomery T, Corn M (1970) Aerosol deposition in a pipe with turbulent air flow. J Aerosol Sci 1:185–213CrossRefGoogle Scholar
  61. 61.
    Fan H, Hua J (2013) Experimental research and modeling of particle deposition in ventilation ducts. Adv Mech Eng Article ID 208528. http://dx.doi.org/10.1155/2013/208528
  62. 62.
    Tian L, Ahamadi G (2007) Particle deposition in turbulent duct flows - comparisons of different model predictions. J Aerosol Sci 38:377–397CrossRefGoogle Scholar
  63. 63.
    Wood N (1981) A simple method for the calculation of turbulent deposition to smooth and rough surfaces. J Aerosol Sci 12:275–290CrossRefGoogle Scholar
  64. 64.
    Liu B, Agarwal J (1974) Experimental observation of aerosol deposition in turbulent flow. Aerosol Sci Technol 5:145–155CrossRefGoogle Scholar
  65. 65.
    Sippola M, Nazaroff W (2004) Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts. Aerosol Sci Technol 38:914–925CrossRefGoogle Scholar
  66. 66.
    Sippola M, Nazaroff W (2005) Particle deposition in ventilation ducts: connectors, bends and developing turbulent flow. Aerosol Sci Technol 39:139–150CrossRefGoogle Scholar
  67. 67.
    Cheng Y (1997) Wall deposition of radon progeny and particles in a spherical chamber. Aerosol Sci Technol 27:131–146CrossRefGoogle Scholar
  68. 68.
    You R, Zhao B, Chen C (2012) Developing an empirical equation for modeling particle deposition velocity onto inclined surfaces in indoor environments. Aerosol Sci Technol 46:1090–1099CrossRefGoogle Scholar
  69. 69.
    Ben Othmane M (2011) Study of particle deposition mechanism in ventilation ducts of food factory. In French. PhD Thesis, ONIRIS, L’UNAM, Nantes, FranceGoogle Scholar
  70. 70.
    Arroyo G, Chomel N (2012) CLEANAIRNET: Conception hygiénique des réseaux de distribution d’air dans les industries agroalimentaires. Compte-rendu de fin de projet. Hygienic design of Ventilation Networks in Food Factories. Final report. In French. Report No. ANR-07-PNRA-0019. French National Research Agency (ANR), FranceGoogle Scholar
  71. 71.
    Carlier J, Arroyo G, Georgeault P, Guibert A, Loubat M, Wallian L (2014) Assembly for trapping particles suspended in a fluid (Ensemble de piégeage de particules en suspension dans un fluide). French Patent WO 2014/057221 A1, 17 avril 2014Google Scholar
  72. 72.
    Afram A, Janabi-Sharifi F (2014) Review of modeling methods for HVAC systems. Appl Thermal Eng 67:507–519CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guillaume Da
    • 1
    Email author
  • Evelyne Géhin
    • 1
  • Michel Havet
    • 2
  • Mourad Ben Othmane
    • 3
  • Camille Solliec
    • 4
  1. 1.CERTES—Université Paris Est CréteilCréteilFrance
  2. 2.UMR GEPEA—ONIRISNantesFrance
  3. 3.CLAUGERBrignaisFrance
  4. 4.UMR GEPEA—EMNNantesFrance

Personalised recommendations