Advertisement

Microwaves in Green and Sustainable Chemistry

  • Antonio de la HozEmail author
  • Ángel Díaz-Ortiz
  • Pilar Prieto
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 32)

Abstract

Since the creation of the group of microwaves and sustainable organic synthesis (MSOC) we have been interested in the development and applications of synthetic methodologies for green and sustainable synthesis. In this account major contributions in microwave-assisted organic synthesis (MAOS) related to green and sustainable chemistry are described.

Keywords

Computational calculations Green Chemistry Microwaves Solvent-free 

Notes

Acknowledgement

Financial support from the MINECO of Spain through project CTQ2011-22410 is gratefully acknowledged.

References

  1. 1.
    Anastas PT, Warner J (1998) Green Chemistry. Theory and practice. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Noyori R (2010) Insight: Green Chemistry: the key to our future. Tetrahedron 66:1028CrossRefGoogle Scholar
  3. 3.
    Li C-J, Anastas PT eds (2012) Chem Soc Rev 41:4. Green Chemistry themed issueGoogle Scholar
  4. 4.
    Dunn PJ (2012) The importance of Green Chemistry in process research and development. Chem Soc Rev 41:1452–1461CrossRefGoogle Scholar
  5. 5.
    Burmeister M, Rauch F, Eilks I (2012) Education for Sustainable Development (ESD) and chemistry education. Chem Educ Res Pract 13:59–68CrossRefGoogle Scholar
  6. 6.
    Meyer DE, González MA (2014) The economics of green and sustainable chemistry. In: Marteel-Parrish AE, Abraham MA (eds) Green chemistry and engineering. A pathway to sustainability, AIChE-Wiley, Hoboken pp 287–324Google Scholar
  7. 7.
    Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Tech 37:94A–101ACrossRefGoogle Scholar
  8. 8.
    Trost B (1991) The atom economy-a search for synthetic efficiency. Science 254:1471–1477CrossRefGoogle Scholar
  9. 9.
    Sheldon RA (1992) Organic synthesis; past, present and future. Chem Ind 903–906Google Scholar
  10. 10.
    de la Hoz A, Loupy A (2012) Microwaves in organic synthesis, 3rd edn. Wiley, WeinheimCrossRefGoogle Scholar
  11. 11.
    Kappe CO, Stadler A (2012) Microwaves in organic and medicinal chemistry, 2nd edn. Wiley, WeinheimCrossRefGoogle Scholar
  12. 12.
    König B, NOP Project (2014) Sustainability in the organic chemistry lab course. http://www.oc-praktikum.de/nop/en-entry. Accessed 19 Feb 2014
  13. 13.
    Razzaq T, Kappe CO (2008) On the energy efficiency of microwave-assisted organic reactions. ChemSusChem 1:123–132CrossRefGoogle Scholar
  14. 14.
    Moseley JD, Kappe CO (2011) A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 13:794–805CrossRefGoogle Scholar
  15. 15.
    Schneider F, Szuppa T, Stolle A, Ondruschka B, Hopf H (2009) Energetic assessment of the Suzuki–Miyaura reaction: a curtate life cycle assessment as an easily understandable and applicable tool for reaction optimization. Green Chem 11:1894–1899CrossRefGoogle Scholar
  16. 16.
    Benaskar F, Ben-Abdelmoumen A, Patil NG, Rebrov EV, Meuldijk J, Hulshof LA, Hessel V, Krtschil U, Schouten JC (2011) Cost analysis for a continuously operated fine chemicals production plant at 10 kg/day using a combination of microprocessing and microwave heating. J Flow Chem 2:74–89CrossRefGoogle Scholar
  17. 17.
    Díez-Barra E, de la Hoz A, Díaz-Ortiz A, Prieto P (1991) Preparation of racemic and enantiomerically pure ketene acetals. Synth Commun 23:1935–1942Google Scholar
  18. 18.
    Díaz-Ortiz A, Díez-Barra E, de la Hoz A, Prieto, P, Moreno A (1994) Cycloadditions of ketene acetals under microwave irradiation in solvent-free conditions. J Chem Soc Perkin Trans 1:3595–3598Google Scholar
  19. 19.
    Díaz-Ortiz A, Díez-Barra E, de la Hoz A, Prieto P, Moreno A, Langa F, Prangé T, Neuman A (1995) Facial selectivity in cycloadditions of a chiral ketene acetal under microwave irradiation in solvent-free conditions. Configurational assignment by NOESY experiments and molecular mechanics calculations. J Org Chem 60:4160–4166CrossRefGoogle Scholar
  20. 20.
    Díaz-Ortiz A, Carrillo JR, Gómez-Escalonilla MJ, de la Hoz A, Moreno, A, Prieto P (1998) First Diels–Alder reaction of pyrazolyl imines under microwave irradiation. Synlett 1069–1070Google Scholar
  21. 21.
    Díaz-Ortiz A, de la Hoz A, Langa F (2000) Microwave irradiation in solvent-free conditions: an eco-friendly methodology to prepare indazoles, pyrazolopyridines and bipyrazoles by cycloaddition reactions. Green Chem 2:165–172CrossRefGoogle Scholar
  22. 22.
    Díaz-Ortiz A, Carrillo JR, Cossío FP, Gómez-Escalonilla MJ, de la Hoz A, Moreno A, Prieto P (2000) Synthesis of pyrazolo[3,4-b]pyridines by cycloaddition reactions under microwave irradiation. Tetrahedron 56:1569–1577CrossRefGoogle Scholar
  23. 23.
    Díaz-Ortiz A, de la Hoz A, Carrillo JR, Herrero M (2012) Selectivity modifications under microwave irradiation. In: de la Hoz A, Loupy A (eds) Microwaves in Organic Synthesis, 3rd edn. Wiley, Weinheim, pp 209–244Google Scholar
  24. 24.
    Almena I, Díaz-Ortiz A, Díez-Barra E, de la Hoz A, Loupy A (1996) Solvent-free benzylations of 2-pyridone. Regiospecific N- or C-alkylation. Chem Lett 5:333–334CrossRefGoogle Scholar
  25. 25.
    de la Hoz A, Prieto P, Rajzmann M, de Cózar A, Díaz-Ortiz A, Moreno A, Cossío FP (2008) Selectivity under microwave irradiation. Benzylation of 2-pyridone: an experimental and theoretical study. Tetrahedron 64:8169–8176CrossRefGoogle Scholar
  26. 26.
    Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis – a critical technology overview. Green Chem 6:128–141CrossRefGoogle Scholar
  27. 27.
    Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave-assisted chemical reactions. Chem Eng Technol 26:1207–1216CrossRefGoogle Scholar
  28. 28.
    Stadler A, Yousefi BH, Dallinger D, Walla P, Van der Eycken E, Kaval N, Kappe CO (2003) Scalability of microwave assisted organic synthesis. From single-mode to multimode parallel batch reactors. Org Process Res Develop 7:707–716CrossRefGoogle Scholar
  29. 29.
    Alcázar J, Diels G, Schoentjes B (2004) Reproducibility across microwave instruments: first example of genuine parallel scale up of compounds under microwave irradiation. QSAR Comb Sci 23:906–910CrossRefGoogle Scholar
  30. 30.
    Alcázar J (2005) Reproducibility across microwave instruments: Preparation of a set of 24 compounds on a multiwell plate under temperature-controlled conditions. J Comb Chem 7:353–355CrossRefGoogle Scholar
  31. 31.
    Loones KTJ, Maes BUW, Rombouts G, Hostyna S, Diels G (2005) Microwave-assisted organic synthesis: scale-up of palladium catalyzed aminations using single-mode and multi-mode microwave equipment. Tetrahedron 61:10338–10348CrossRefGoogle Scholar
  32. 32.
    Murray JK, Gellman SH (2006) Microwave-assisted parallel synthesis of a 14-helical beta-peptide library. J Comb Chem 8:58–65CrossRefGoogle Scholar
  33. 33.
    Alcázar J, de la Hoz A, Díaz-Ortiz A, Carrillo JR, Herrero MA (2007) Reproducibility and scalability of solvent-free microwave assisted reactions: from domestic ovens to controllable parallel applications. Comb Chem High Throughput Screen 10:163–169CrossRefGoogle Scholar
  34. 34.
    Alcázar J, de la Hoz A, Díaz-Ortiz A, Carrillo JR, Herrero MA, Fontana A, Muñoz JM, Prieto P, de Cózar A (2011) Influence of polarity on the scalability and reproducibility of solvent-free reactions comb. Chem High Throughput Screen 14:109–116CrossRefGoogle Scholar
  35. 35.
    Vázquez E, Prato M (2009) Carbon nanotubes and microwaves: interactions, responses, and applications. ACS Nano 2:3819–3824Google Scholar
  36. 36.
    Vázquez E, Georgakilas V, Prato M (2002) Microwave-assisted purification of HIPCO carbon nanotubes Chem. Commun. 2308–2309Google Scholar
  37. 37.
    Harutyunyan AR, Pradhan BK, Chang J, Chen G, Eklund PC (2002) Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B 106:8671–8675CrossRefGoogle Scholar
  38. 38.
    Brunetti FG, Herrero MA, Muñoz JM, Giordani S, Díaz-Ortiz A, Filippone S, Ruaro G, Meneghetti M, Prato P, Vázquez E (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581CrossRefGoogle Scholar
  39. 39.
    Brunetti FG, Herrero MA, Muñoz JM, Díaz-Ortiz A, Alfonsi J, Meneghetti M, Prato M, Vázquez E (2008) Microwave-induced multiple functionalization of carbon nanotubes. J Am Chem Soc 130:8094–8100CrossRefGoogle Scholar
  40. 40.
    Carrillo JR, Díaz-Ortiz A, de la Hoz A, Moreno A, Gómez MV, Prieto P, Sánchez-Migallón A, Vázquez E (2003) Application of microwave irradiation, solid supports and catalyst in environmentally benign heterocyclic chemistry. Targets Heterocyclic Chem 7:64–90Google Scholar
  41. 41.
    de la Hoz A, Díaz-Ortiz A, Fraile JM, Gómez MV, Mayoral JA, Moreno A, Saiz A, Vázquez E (2001) Synergy between heterogeneous catalysis and microwave irradiation in an efficient one-pot synthesis of benzene derivatives via ring-opening of Diels–Alder cycloadducts of substituted furans. Synlett 753–756Google Scholar
  42. 42.
    Fraile JM, García JI, Gómez MV, de la Hoz A, Mayoral JA, Moreno A, Prieto P, Salvatella L, Vázquez E (2001) Tandem Diels–Alder aromatization reactions of furans under unconventional reaction conditions – experimental and theoretical studies. Eur J Org Chem 2891–2899Google Scholar
  43. 43.
    Moreno A, Gómez MV, Vázquez E, de la Hoz A, Díaz-Ortiz A, Prieto P, Mayoral JA, Pires E (2004) An efficient one-pot synthesis of phenol derivatives by ring opening and rearrangement of Diels–Alder cycloadducts of substituted furans using heterogeneous catalysis and microwave irradiation. Synlett 1259–1263Google Scholar
  44. 44.
    Leadbeater NE, Torenius HM (2002) A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 67:3145–3148CrossRefGoogle Scholar
  45. 45.
    Bose AK, Manhas MS, Ganguly SN, Sharma AH, Banik BK (2002) MORE chemistry for less pollution: applications for process development. Synthesis 1578–1591Google Scholar
  46. 46.
    Díaz-Ortiz A, Elguero J, de la Hoz A, Jiménez A, Moreno A, Moreno S, Sánchez-Migallón A (2005) Microwave-assisted synthesis and dynamic behavior of N2, N4, N6-Tris(1H-pyrazolyl)-1,3,5-triazine-2,4,6-triamines. QSAR Comb Sci 24:649–659CrossRefGoogle Scholar
  47. 47.
    Moral M, Ruiz A, Moreno A, Díaz-Ortiz A, López-Solera I, de la Hoz A, Sánchez-Migallón A (2010) Microwave-assisted synthesis of pyrazolyl bistriazines. Tetrahedron 66:121–127CrossRefGoogle Scholar
  48. 48.
    de Cózar A, Millán MC, Cebrián C, Prieto P, Díaz-Ortiz A, de la Hoz A, Cossío FP (2010) Computational calculations in microwave-assisted organic synthesis (MAOS). Application to cycloaddition reactions. Org Biomol Chem 8:1000–1009CrossRefGoogle Scholar
  49. 49.
    Rodriguez AM, Prieto P, de la Hoz A, Díaz-Ortiz A (2011) “In silico” mechanistic studies as predictive tools in microwave-assisted organic synthesis. Org Biomol Chem 9:2371–2377CrossRefGoogle Scholar
  50. 50.
    Rodriguez AM, Prieto P, de la Hoz A, Díaz-Ortiz A, García JI (2014) The issue of ‘molecular radiators’ in microwave assisted reactions. Computational calculations on ring closing metathesis (RCM). Org Biomol Chem 12:2436–2445CrossRefGoogle Scholar
  51. 51.
    Stuerga D, Pribetich P (2012) Key ingredients for mastery of chemical microwave processes. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley, Weinheim, pp 105–126Google Scholar
  52. 52.
    Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52:1088–1094CrossRefGoogle Scholar
  53. 53.
    Langa F, de la Cruz P, de la Hoz A, Espíldora E, Cossío FP, Lecea B (2000) Modification of regioselectivity in cycloadditions to C70 under microwave irradiation. J Org Chem 65:2499–2507CrossRefGoogle Scholar
  54. 54.
    Rodriguez AM, Cebrián C, Prieto P, García JI, de la Hoz A, Díaz-Ortiz A (2012) DFT studies on cobalt-catalyzed cyclotrimerization reactions: the mechanism and origin of reaction improvement under microwave irradiation. Chem Eur J 18:6217–6224CrossRefGoogle Scholar
  55. 55.
    Miura T, Wasielewski MR (2011) Manipulating photogenerated radical ion pair lifetimes in wirelike molecules using microwave pulses: molecular spintronic gates. J Am Chem Soc 133:2844–2847CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Antonio de la Hoz
    • 1
    Email author
  • Ángel Díaz-Ortiz
    • 1
  • Pilar Prieto
    • 1
  1. 1.Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías QuímicasUniversidad de Castilla-La ManchaCiudad RealSpain

Personalised recommendations