Indoor Particles, Combustion Products and Fibres

  • Lidia MorawskaEmail author
  • Congrong He
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 64)


Pollutants in the indoor environment are a complex mixture of gases, vapours and particles in either liquid or solid phase, suspended in the air, settled or adsorbed on or attached to indoor surfaces. The pollutants originate from a multiplicity of indoor and outdoor sources. The pollutant mixture is dynamic, involved in numerous physical and chemical processes and changing its characteristics with time. Its composition and concentration depend on the strengths of indoor sources, pollutants’ concentration outside and the properties of heating ventilation and air conditioning systems. The spatial distribution of pollutant concentration within the indoor environment is often inhomogeneous.

Particulate matter in the indoor environment includes particles, which are airborne as well as those which are settled on indoor surfaces, dust. The particles vary in chemical properties, which depend on the origin of the particles and differ for particles in different size ranges. The particles can, for example, be combustion or nucleation products, dust or bioaerosols and can act as carriers of adsorbed chemicals, bio-contaminants or condensed gases. Particles are a key component of emissions from all the combustion sources. In particular, a significant indoor combustion product, environmental tobacco smoke (ETS) is a mixture of particle and gaseous products of smoke exhaled to the air by smokers and mixed with the smoke resulting from smouldering of a cigarette between the puffs.

This chapter is focused on particulate matter, its origin, characteristics and behaviour in the indoor environment. In addition, several important classes of indoor pollutants are discussed, those which are entirely or partially composed of particulate matter. These include ETS and combustion products from other sources, such as wood smoke or vehicle emissions, and also fibres, in particular, asbestos.


Dust ETS Fibres Indoor air pollution Indoor particles 


  1. 1.
    Wallace L (2000) Aerosol Sci Technol 32:15CrossRefGoogle Scholar
  2. 2.
    He C, Morawska L, Taplin L (2007) Environmen Sci Technol 41:6039–6045Google Scholar
  3. 3.
    Wolkoff P, Schneider T, Kildeso J, Degerth R, Jaroszewski M, Schunk H (1998) Sci Total Environ 215(1–2):135–156CrossRefGoogle Scholar
  4. 4.
    Morawska L, Zhang J (2002) Chemosphere 49:1045CrossRefGoogle Scholar
  5. 5.
    Zhang J, Morawska L (2002) Chemosphere 49:1059CrossRefGoogle Scholar
  6. 6.
    Morawska L, Salthammer T (2003) In: Morawska L, Salthammer T (eds) Indoor environment, airborne particles and settled dust. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Özkaynak H, Xue J, Weker R, Butler D, Koutrakis P, Spengler J (1994) The Particle TEAM (PTEAM) study: analysis of the data-final report, vol 3. Harvard School of Public Health, BostonGoogle Scholar
  8. 8.
    Knibbs LD, He CR, Duchaine C, Morawska L (2012) Environment Sci Technol 46(1):534–542CrossRefGoogle Scholar
  9. 9.
    Morawska L, Mengersen K, Holmes NS, Tayphasavanh F, Darasavong K, Wang H (2011) Environ Sci Technol 45:882–889CrossRefGoogle Scholar
  10. 10.
    Willeke K, Baron PA (eds) (1993) In: Aerosol measurement principles, techniques and application. Van Nostrand Reinhold, New YorkGoogle Scholar
  11. 11.
    Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New YorkGoogle Scholar
  12. 12.
    Whitby KT (1987) Atmos Environ 12:135CrossRefGoogle Scholar
  13. 13.
    Schmidt-Ott A (1988) Appl Phys Lett 52:954CrossRefGoogle Scholar
  14. 14.
    Peitgen HO, Richter PH (1986) The beauty of fractals. Springer-Verlag, BerlinCrossRefGoogle Scholar
  15. 15.
    Wolfram S (2002) A new kind of science. Wolfram Media Inc., ChampaignGoogle Scholar
  16. 16.
    Wallace L (2006) Aerosol Sci Technol 40:348CrossRefGoogle Scholar
  17. 17.
    Abt E, Suh HH, Allen G, Koutrakis P (2000) Environ Health Perspect 108:35CrossRefGoogle Scholar
  18. 18.
    Li C-S, Jenq F-T, Lin W-H (1992) J Aerosol Sci 23:s547CrossRefGoogle Scholar
  19. 19.
    Li C-S, Lin W-H, Jenq F-T (1993) Atmos Environ 27B:413CrossRefGoogle Scholar
  20. 20.
    Kleeman MJ, Schauer JJ, Cass GR (1999) Environmen Sci Technol 33:356Google Scholar
  21. 21.
    Morawska L, Thomas S, Bofinger ND, Wainwright D, Neale D (1998) Atmos Environ 32:2461CrossRefGoogle Scholar
  22. 22.
    Morawska L, Thomas S (2000) Modality of ambient particle distributions as a basis for developing air quality regulations. In: Clean air and environment conference, Sydney, Australia, 26–30 November 2000Google Scholar
  23. 23.
    Chao C, Tung T, Burnett J (1998) Indoor Built Environment 7:110CrossRefGoogle Scholar
  24. 24.
    Matthias-Maser S, Jaenicke RT (1995) Atmos Res 39:279CrossRefGoogle Scholar
  25. 25.
    Wallace L (1996) J Air Waste Manage Assoc 46:98CrossRefGoogle Scholar
  26. 26.
    Mosley RB, Greenwell DJ, Sparks LE, Guo Z, Tucker WG, Fortmann RC, Whitfield C (2001) Aerosol Sci Technol 34:127CrossRefGoogle Scholar
  27. 27.
    Long CM, Suh HH, Catalano PJ, Koutrakis P (2001) Environment Sci Technol 35:2089CrossRefGoogle Scholar
  28. 28.
    He C, Morawska L, Gilbert D (2005) Atmos Environ 39(21):3891–3899CrossRefGoogle Scholar
  29. 29.
    Thatcher TL, Layton DW (1995) Atmos Environ 29:1487CrossRefGoogle Scholar
  30. 30.
    Yamamoto T, Ensor D, Sparks L (1994) Build Environ 29:291CrossRefGoogle Scholar
  31. 31.
    Biggs K, Bennie I, Michell D (1986) Build Environ 21:89CrossRefGoogle Scholar
  32. 32.
    Jamriska M, Morawska L, Ensor D (2003) Indoor Air 13:96–105CrossRefGoogle Scholar
  33. 33.
    He C, Morawska L, Tran Q, McGarry P (2011) The effect of indoor and outdoor particle sources on indoor air quality of a new multilevel office building in the vicinity of a busway. In: The 12th international conference on indoor air quality and climate, Austin, USA, 510 June 2011Google Scholar
  34. 34.
    Weschler CJ, Shields HC (1999) Atmos Environ 33:2301CrossRefGoogle Scholar
  35. 35.
    Weschler C (2003) In: Morawska L, Salthammer T (eds) Indoor environment, airborne particles and settled dust. Wiley-VCH, WeinheimGoogle Scholar
  36. 36.
    Morawska L, He C, Johnson G, Guo H, Uhde E, Ayoko G (2009) Environ Sci Technol 43:9103–9109CrossRefGoogle Scholar
  37. 37.
    Wang H, He C, Morawska L, McGarry P, Johnson G (2012) Environ Sci Technol 46:704–712CrossRefGoogle Scholar
  38. 38.
    Koutrakis P, Briggs SK, Leaderer BP (1992) Environment Sci Technol 26:521CrossRefGoogle Scholar
  39. 39.
    Wilson WE, Mage DT, Grant LD (2000) J Air Waste Manage Assoc 50:1167CrossRefGoogle Scholar
  40. 40.
    USEPA (1997) Exposure factors handbook. National Center for Environmental Assessment, Washington, DCGoogle Scholar
  41. 41.
    VDI (2001) Measurement of indoor air polution. Sampling of house dust. VDI 4300, Part 8, Beuth, BerlinGoogle Scholar
  42. 42.
    Quee Hee S, Peace B, Clark CS, Boyle JR, Boule JR, Bornschein RL, Hammond PB (1985) Environ Res 38:77CrossRefGoogle Scholar
  43. 43.
    Seifert B (1998) Die Untersuchung von Hausstaub im Hinblick auf Expositionsabschätzungen. Bundesgesundheitsblatt 41:383–391CrossRefGoogle Scholar
  44. 44.
    Morawska L, Salthammer T (2003) Indoor environment: airborne particles and settled dust. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  45. 45.
    Molhave L, Schneider T, Kjaergaard SK, Larsen L, Norn S, Jorgensen O (2000) Atmos Environ 34:4767CrossRefGoogle Scholar
  46. 46.
    Chew GL, Douwes J, Doekes G, Higgins KM, van Strien R, Spithoven J, Brunekreef B (2001) Indoor Air 11:171CrossRefGoogle Scholar
  47. 47.
    Bischof W, Koch A, Gehring U, Fahlbusch B, Wichmann HE, Heinrich J (2002) Indoor Air 12:2CrossRefGoogle Scholar
  48. 48.
    Vejrup K, Wolkoff P (2002) Sci Total Environ 300:51CrossRefGoogle Scholar
  49. 49.
    ILO (1990) Safety in the use of mineral and synthetic fibres. International Labour Organisation, GenevaGoogle Scholar
  50. 50.
    Bake D (2003) In: Morawska L, Salthammer T (eds) Indoor environment, airborne particles and settled dust. Wiley-VCH, WeinheimGoogle Scholar
  51. 51.
    Li W, Hopke PK (1993) Aerosol Sci Technol 19:305CrossRefGoogle Scholar
  52. 52.
    Nazaroff W, Klepeis N (2003) In: Morawska L, Salthammer T (eds) Indoor environment, airborne particles and settled dust. Wiley-VCH, WeinheimGoogle Scholar
  53. 53.
    Cass GR (1998) Trends Anal Chem 17:356CrossRefGoogle Scholar
  54. 54.
    Morawska L, Jamriska M, Boginger ND (1997) Sci Total Environ 196:43CrossRefGoogle Scholar
  55. 55.
    First MW (1985) In: Gammage RB, Kaye SV (eds) Indoor air and human health. Lewis Publishers Inc, MichiganGoogle Scholar
  56. 56.
    Leaderer BP, Hammond SK (1991) Environment Sci Technol 25:770CrossRefGoogle Scholar
  57. 57.
    Rando RJ, Menon PK, Poovey HG, Lehrer SB (1992) Am Ind Hyg Assoc J 32:3845Google Scholar
  58. 58.
    Odgen M, Heaven D, Foster T, Maiolo K, Cahs S, Richardson J, Martin P, Simmons P, Conrad F, Nelson P (1996) Environ Technol 17:239CrossRefGoogle Scholar
  59. 59.
    Eatough DJ, Benner CK, Tang H, Landon V, Richards G, Caka FM, Crawford J, Lewis EA, Haasen LD, Eatough NL (1989) Environ Int 15:19CrossRefGoogle Scholar
  60. 60.
    Eatough DJ, Hansen LD, Lewis EA (1988) Indoor and ambient air quality. Sepler Ltd., London, p 131Google Scholar
  61. 61.
    Tang H, Richards G, Benner C (1990) Environ Sci Technol 24:848CrossRefGoogle Scholar
  62. 62.
    Zhang J, Smith KR (1996) J Expo Anal Environ Epidemiol 6:147Google Scholar
  63. 63.
    Smith KR (1986) Environ Manag 1986:10Google Scholar
  64. 64.
    Saksena S, Prasad R, Pal RC, Joshi V (1992) Atmos Environ 26A:2125CrossRefGoogle Scholar
  65. 65.
    Smith KR (1993) Annu Rev Energy Environ 18:529CrossRefGoogle Scholar
  66. 66.
    Zhang J, Smith KR (1999) Environ Sci Technol 33:2311CrossRefGoogle Scholar
  67. 67.
    WHO (1999) World health organization health guidelines for vegetation fire events. World Health Organization, GenevaGoogle Scholar
  68. 68.
    Raiyani CV, Shah SH, Desai NM, Kenkaiah K, Patel JS, Parikh DJ, Kashyap SK (1993) Atmos Environ 27A:1643CrossRefGoogle Scholar
  69. 69.
    Hueglin C, Gaegauf C, Kunzel S, Burtscher H (1997) Environment Sci Technol 31:3439CrossRefGoogle Scholar
  70. 70.
    Burnet PG, Edmisten NG, Tiegs PE, Houck JE, Yoder RA (1986) Air Pollution Contr Assoc 1986:1012CrossRefGoogle Scholar
  71. 71.
    Limbeck A, Puxbaum H (1999) Atmos Environ 33:1847CrossRefGoogle Scholar
  72. 72.
    Mumford JL, Harris DB, Williams K, Chuang JC, Cooke M (1987) Environ Sci Technol 21:308CrossRefGoogle Scholar
  73. 73.
    Li CK, Kamens RM (1993) Atmos Environ 27A:523CrossRefGoogle Scholar
  74. 74.
    Hawthorne SB, Miller D, Langenfeld JJ, Keieger MS (1992) Environ Sci Technol 26:2251CrossRefGoogle Scholar
  75. 75.
    Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106CrossRefGoogle Scholar
  76. 76.
    Morawska L, Bofinger N, Kosic L, Nwankowala A (1998) Environment Sci Technol 32:2033CrossRefGoogle Scholar
  77. 77.
    Ristovski Z, Morawska L, Thomas S, Hitchins J, Greenaway C, Gilbert D (2000) J Aerosol Sci 31:403CrossRefGoogle Scholar
  78. 78.
    Kittelson DB (1998) J Aerosol Sci 29:525CrossRefGoogle Scholar
  79. 79.
    Zinbo M, Korniski TJ, Weir JE (1995) Ind Eng Chem Res 34:619CrossRefGoogle Scholar
  80. 80.
    Kittelson DB, Watts WF, Johnson JH (2002) Diesel aerosol sampling methodology CRC E-43 Final Report (NTIS Accession no. PB 20031024181)Google Scholar
  81. 81.
    Brodowicz P, Carrey P, Cook R, Somers J (1993) In: Al. E (ed) EPA Technical Support Branch, Emission Planning and Strategies Division, Office of Mobile Sources, Ann ArborGoogle Scholar
  82. 82.
    Simoneit BRT (1985) Int J Anal Chem 22:203CrossRefGoogle Scholar
  83. 83.
    Demirbas A (2009) Appl Energy 86:S108–S117CrossRefGoogle Scholar
  84. 84.
    Kumar P, Robins A, ApSimon H (2010) Atmos Sci Lett 11(4):327–331CrossRefGoogle Scholar
  85. 85.
    Gangwar J, Gupta T, Gupta S, Agarwal AK (2011) Inhal Toxicol 23(8):449–458CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations