Skip to main content

Photocatalytic Splitting of Water

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 35))

Abstract

The use of photocatalysis for the photosplitting of water to generate hydrogen and oxygen has gained interest as a method for the conversion and storage of solar energy. The application of photocatalysis through catalyst engineering, mechanistic studies and photoreactor development has highlighted the potential of this technology, with the number of publications significantly increasing in the past few decades. In 1972 Fujishima and Honda described a photoelectrochemical system capable of generating H2 and O2 using thin-film TiO2. Since this publication, a diverse range of catalysts and platforms have been deployed, along with a varying range of photoreactors coupled with photoelectrochemical and photovoltaic technology. This chapter aims to provide a comprehensive overview of photocatalytic technology applied to overall H2O splitting. An insight into the electronic and geometric structure of catalysts is given based upon the one- and two-step photocatalyst systems. One-step photocatalysts are discussed based upon their d0 and d10 electron configuration and core metal ion including transition metal oxides, typical metal oxides and metal nitrides. The two-step approach, referred to as the Z-scheme, is discussed as an alternative approach to the traditional one-step mechanism, and the potential of the system to utilise visible and solar irradiation. In addition to this the mechanistic procedure of H2O splitting is reviewed to provide the reader with a detailed understanding of the process. Finally, the development of photoreactors and reactor properties are discussed with a view towards the photoelectrochemical splitting of H2O.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible light driven overall water splitting. J Am Chem Soc 127:8286–8287

    CAS  Google Scholar 

  2. Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K (2005) Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B 109(43):20504–20510

    CAS  Google Scholar 

  3. Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042–1048

    CAS  Google Scholar 

  4. Bard AJ (1979) Photoelectrochemistry and heterogenous photocatalysis at semiconductors. J Photochem Photobiol C 10:59–75

    CAS  Google Scholar 

  5. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. Chem Commun 7(23):2416–2417

    Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  7. Bolton JR (1996) Solar photoproduction of hydrogen: a review. Sol Energy 57(1):37–50

    CAS  Google Scholar 

  8. Esswein A, Nocera D (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107(10):4022–4047

    CAS  Google Scholar 

  9. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Roy Soc Ch 38:253–278

    CAS  Google Scholar 

  10. Amouyal E (1995) Photochemical production of hydrogen and oxygen from water: a review and state of the art. Sol Energy Mater Sol Cell 38(1–4):249–276

    CAS  Google Scholar 

  11. Dvoranova D, Brezova V, Mazur M, Malati M (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal Environ 37(2):91–105

    CAS  Google Scholar 

  12. Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a photocatalyst. Int J Hydrogen Energy 32(14):2689–2692

    CAS  Google Scholar 

  13. Jin Z, Zhang X, Li S, Lu G (2007) 5.1% apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal Commun 8(8):1267–1273

    CAS  Google Scholar 

  14. Ohtani B (2008) Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37(3):217–229

    CAS  Google Scholar 

  15. Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ Sci 2:364–386

    CAS  Google Scholar 

  16. Sayama K, Arakawa H (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt–TiO2 catalyst. J Chem Soc Faraday T 93(8):1647–1654

    CAS  Google Scholar 

  17. Yamaguti K, Sato S (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday T 81:1237–1246

    CAS  Google Scholar 

  18. Jeong H, Kim T, Kim D, Kim K (2006) Hydrogen production by the photocatalytic overall water splitting on: effect of preparation method. Int J Hydrogen Energy 31(9):1142–1146

    CAS  Google Scholar 

  19. Takata T, Shinohara K, Tanaka A, Hara M, Kondo JN, Domen K (1997) A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. J Photoch Photobio A 106(1–3):45–49

    CAS  Google Scholar 

  20. Ogura S, Kohno M, Sato K, Inoue Y (1998) Photocatalytic properties of M2Ti6O13 (M=Na, K, Rb, Cs) with rectangular tunnel and layer structures: behavior of a surface radical produced by UV irradiation and photocatalytic activity for water decomposition. Phys Chem Chem Phys 1:179–183

    Google Scholar 

  21. Inoue Y, Niiyama T, Asai Y, Sato K (1992) Stable photocatalytic activity of BaTi409 combined with ruthenium oxide for decomposition of water. J Chem Soc Chem commun 579–580

    Google Scholar 

  22. Reddy RV, Hwang DW, Lee JS (2003) Photocatalytic water splitting over ZrO2 prepared by precipitation method. Korean J Chem Eng 20(6):1026–1029

    CAS  Google Scholar 

  23. Lin H, Lee T, Sie C (2008) Photocatalytic hydrogen production with nickel oxide intercalated K4Nb6O17 under visible light irradiation. Int J Hydrogen Energy 33(15):4055–4063

    CAS  Google Scholar 

  24. Sayama K, Arakawa H, Asakura K, Tanaka A, Domen K, Onishi T (1998) Photocatalytic activity and reaction mechanism of Pt-interlaced K4Nb6O17 catalyst on the water splitting in carbonate salt aqueous solution. J Photoch Photobio A 114:125–135

    CAS  Google Scholar 

  25. Kim SH, Park S, Lee CW, Han BS, Seo SW, Kim JS, Cho IS, Hong KS (2012) Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (M=Nb, Ta). Int J Hydrogen Energy 37(22):16895–16902

    CAS  Google Scholar 

  26. Chen W, Li C, Gao H, Yuan J, Shangguan W, Su J, Sun Y (2012) Photocatalytic water splitting on protonated form of layered perovskites K0.5La0.5Bi2M2O9 (M=Ta; Nb) by ion-exchange. Int J Hydrogen Energy 37(17):12846–12851

    CAS  Google Scholar 

  27. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089

    CAS  Google Scholar 

  28. Kato H, Kudo A (2001) Energy structure and photocatalytic activity for water splitting of Sr2(Ta1 − XNbX)2O7 solid solution. J Photoch Photobio A 145(1–2):129–133

    CAS  Google Scholar 

  29. Ikeda S, Fubuki M, Takahara YK, Matsumura M (2006) Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting. Appl Catal Gen 300(2):186–190

    CAS  Google Scholar 

  30. Kadowaki H, Saito N, Nishiyama H, Kobayashi H, Shimodaira Y, Inoue Y (2007) Overall splitting of water by RuO2-loaded PbWO4 photocatalyst with d10s2-d0 configuration. J Phys Chem 111:439–444

    CAS  Google Scholar 

  31. Sakata Y, Matsuda Y, Yanagida T, Hirata K, Imamura H, Teramura K (2008) Effect of metal Ion addition in a Ni supported Ga2O3 photocatalyst on the photocatalytic overall splitting of H2O. Catal Lett 125:22–26

    CAS  Google Scholar 

  32. Maeda K, Teramura K, Saito N, Inoue Y, Domen K (2006) Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. J Catal 243(2):303–308

    CAS  Google Scholar 

  33. Sato J, Saito N, Nishiyama H, Inoue Y (2002) Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J Photoch Photobio A 148(1–3):85–89

    CAS  Google Scholar 

  34. Moriya Y, Takata T, Domen K (2013) Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 257(13–14):1957–1969

    CAS  Google Scholar 

  35. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C 12(4):237–268

    CAS  Google Scholar 

  36. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11(4):179–209

    Google Scholar 

  37. Jang JS, Kim HG, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185(1):270–277

    CAS  Google Scholar 

  38. Pai MR, Banerjee AM, Tripathi AK, Bharadwaj SR (2012) 14—Fundamentals and applications of the photocatalytic water splitting reaction. In: Banerjee S, Tyagi A (eds) Functional materials. Elsevier, London, pp 579–606

    Google Scholar 

  39. Yamaguti K, Sato S (1984) Photolysis of water over platinum/titanium dioxide catalyst. Nippon Kagaku Kaishi 2:258–263

    Google Scholar 

  40. Hu C, Teng H (2010) Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. J Catal 272(1):1–8

    CAS  Google Scholar 

  41. Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2. J Phys Chem B 110(5):2219–2226

    CAS  Google Scholar 

  42. Inoue Y, Asai Y, Sayama K (1994) Photocatalysts with tunnel structures for decomposition of water part 1.-BaTi, O, a pentagonal prism tunnel structure, and its combination with various promoters. J Chem Soc Faraday T 90(5):797–802

    CAS  Google Scholar 

  43. Zheng X, Wei L, Zhang Z, Jiang Q, Wei Y, Xie B, WEI M (2009) Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. Int J Hydrogen Energy 34(22):9033–9041

    CAS  Google Scholar 

  44. Yang J, Yan H, Wang X, Wen F, Wang Z, Fan D, Shi J, Li C (2012) Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J Catal 290:151–157

    CAS  Google Scholar 

  45. Mizukoshi Y, Makise Y, Shuto T, Hu J, Tominaga A, Shironita S, Tanabe S (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 14(3):387–392

    CAS  Google Scholar 

  46. Takahashi T, Kakihana M, Yamashita K, Yoshida K, Ikeda S, Hara M, Domen K (1999) Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method. J Alloys Compd 285:77–81

    CAS  Google Scholar 

  47. Domen K, Kudo A, Shinozaki A, Tanaka A, Maruya K, Onishi T (1986) Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts. J Chem Soc Chem Commun (4):356–357

    Google Scholar 

  48. Huang Y, Wu J, Wei Y, Lin J, Huang M (2008) Hydrothermal synthesis of K2La2Ti3O10 and photocatalytic splitting of water. J Alloys Compd 456(1–2):364–367

    CAS  Google Scholar 

  49. Kim HG, Hwang DW, Kim J, Kim Y, Lee JS (1999) Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun 1077–1078

    Google Scholar 

  50. Ikeda S, Hirao K, Ishino S, Matsumura M, Ohtani B (2006) Preparation of platinized strontium titanate covered with hollow silica and its activity for overall water splitting in a novel phase-boundary photocatalytic system. Catal Today 117(1–3):343–349

    Google Scholar 

  51. Yang Y, Lee K, Kado Y, Schmuki P (2012) Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting. Electrochem Commun 17:56–59

    CAS  Google Scholar 

  52. Altomare M, Pozzi M, Allieta M, Bettini LG, Selli E (2013) H2 and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity. Appl Catal Environ 136–137:81–88

    Google Scholar 

  53. Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal Today 120(2):133–138

    CAS  Google Scholar 

  54. Liu J, Liu J, Li Z (2013) Preparation and photocatalytic activity for water splitting of Pt–Na2Ta2O6 nanotube arrays. J Solid State Chem 198:192–196

    CAS  Google Scholar 

  55. Chiou Y, Kumar U, Wu JCS (2009) Photocatalytic splitting of water on NiO/InTaO4 catalysts prepared by an innovative sol–gel method. Appl Catal Gen 357(1):73–78

    CAS  Google Scholar 

  56. Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569

    CAS  Google Scholar 

  57. Zheng C, West A (1991) Compound and solid-solution formation, phase equilibria and Electrical properties in the ceramic system Zr02-La2O3-Ta2O5. J Mat Chem 1(2):163–167

    CAS  Google Scholar 

  58. Kudo A, Kato H (2000) Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem Phys Lett 331:373–377

    CAS  Google Scholar 

  59. Zou Z, Ye J, Arakawa H (2003) Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int J Hydrogen Energy 28(6):663–669

    CAS  Google Scholar 

  60. Li Y, Wu J, Huang Y, Huang M, Lin J (2009) Photocatalytic water splitting on new layered perovskite A2.33Sr0.67Nb5O14.335 (A=K, H). Int J Hydrogen Energy 34(19):7927–7933

    CAS  Google Scholar 

  61. Wei Y, Li J, Huang Y, Huang M, Lin J, Wu J (2009) Photocatalytic water splitting with In-doped H2LaNb2O7 composite oxide semiconductors. Sol Energy Mater Sol Cell 93(8):1176–1181

    CAS  Google Scholar 

  62. Sayama K, Arakawa H, Domen K (1996) Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A=K, Rb). Catal Today 28(1–2):175–182

    CAS  Google Scholar 

  63. Hameed A, Gondal MA, Yamani ZH (2004) Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun 5(11):715–719

    CAS  Google Scholar 

  64. He X, Boehm RF (2009) Direct solar water splitting cell using water, WO3, Pt, and polymer electrolyte membrane. Energy 34(10):1454–1457

    CAS  Google Scholar 

  65. Lai CW, Sreekantan S (2013) Fabrication of WO3 nanostructures by anodization method for visible-light driven water splitting and photodegradation of methyl orange. Mat Sci Semicon Proc 16(2):303–310

    CAS  Google Scholar 

  66. Rao PM, Cho IS, Zheng X (2013) Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting. Proc Combust Inst 34(2):2187–2195

    CAS  Google Scholar 

  67. Lai K, Zhu Y, Lu J, Dai Y, Huang B (2013) N- and Mo-doping Bi2WO6 in photocatalytic water splitting. Comput Mat Sci 67:88–92

    CAS  Google Scholar 

  68. Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612

    CAS  Google Scholar 

  69. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 357–358

    Google Scholar 

  70. Ye J, Zou Z, Arakawa H, Oshikiri M, Shimoda M, Matsushita A, Shishido T (2002) Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+). J Photoch Photobio A 148:79–83

    CAS  Google Scholar 

  71. Lin H, Chen Y, Chen Y (2007) Water splitting reaction on NiO/InVO4 under visible light irradiation. Int J Hydrogen Energy 32(1):86–92

    CAS  Google Scholar 

  72. Kadowaki H, Saito N, Nishiyama H, Inoue Y (2007) RuO2-Loaded Sr2+-doped CeO2 with d0 electronic configuration as a new photocatalyst for overall water splitting. Chem Lett 36(3):440–441

    Google Scholar 

  73. Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst λ < 600 nm). Chem Lett 31(7):736–737

    Google Scholar 

  74. Yamasita D, Takata T, Hara M, Kondo JN, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ion 172(1–4):591–595

    CAS  Google Scholar 

  75. Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753

    CAS  Google Scholar 

  76. Yoshida M, Maeda K, Lu D, Kubota J, Domen K (2013) Lanthanoid oxide layers on rhodium-loaded (Ga1-xZnx)(N1-xOx) photocatalyst as a modifier for overall water splitting under visible-light irradiation. J Phys Chem C 117:14000–14006

    CAS  Google Scholar 

  77. Lee K, Tienes B, Wilker M, Schnitzebaumer K, Dukovic G (2012) (Ga1-xZnx)(N1-xOx) nanocrystals: visible absorbers with tunable composition and absorption spectra. Am Chem Soc Nano Lett 12:3268–3272

    Google Scholar 

  78. Arai N, Saito N, Nishiyama H, Domen K, Kobayashi H, Sato K, Inoue Y (2007) Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting. Catal Today 129(3–4):407–413

    CAS  Google Scholar 

  79. Kato H, Hori M, Konta H, Shimodaira Y, Kudo A (2004) Construction of Z-scheme-type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem Lett 33(10):1348–1349

    CAS  Google Scholar 

  80. Abe R, Takata T, Sugihara H, Domen K (2005) Photocatalytic overall water splitting under visible light by TaON andWO3 with an IO3-/I- shuttle redox mediator. Chem Commun 3829–3831

    Google Scholar 

  81. Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 /I. J Phys Chem B 109:16052–16061

    CAS  Google Scholar 

  82. Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K (2008) Two step water splitting into H2 and O2 under visible light by ATaO2N (A=Ca, Sr, Ba) andWO3 with IO3-/I-shuttle redox mediator. Chem Phys Lett 452:120–123

    CAS  Google Scholar 

  83. Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113:17536–17542

    CAS  Google Scholar 

  84. Abe R, Shinmei K, Hara K, Ohtani B (2009) Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chem Commun 3577–3579

    Google Scholar 

  85. Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868

    CAS  Google Scholar 

  86. Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K (2010) Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 26:9161–9165

    CAS  Google Scholar 

  87. Moradour A, Amouyal E, Keller P, Kagan H (1978) Hydrogen production by visible light irradiation of aqueous solutions of Ru(bipy)32+. New J Chem 2(6):547–549

    Google Scholar 

  88. Navarro RM, del Valle F, Villoria de la Mano JA, Álvarez-Galván MC, Fierro JLG (2009) Photocatalytic water splitting under visible light: concept and catalysts development. Adv Chem Eng 36:111–143

    CAS  Google Scholar 

  89. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2002) A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photoch Photobio A 148(1–3):71–77

    CAS  Google Scholar 

  90. Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3 /Ishuttle redox mediator. Chem Phys Lett 344(3):339–344

    CAS  Google Scholar 

  91. Erbs W, Desilvestro J, Borgarello E, Gratzel M (1984) Visible-light-induced O2 generation from aqueous dispersions of WO3. J Phys Chem 88:4001

    CAS  Google Scholar 

  92. Sayama K, Yoshida M, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+Fe2+ redox system. Chem Phys Lett 277(4):387–391

    CAS  Google Scholar 

  93. Kato H, Sasaki Y, Iwase A, Kudo A (2007) Role of iron Ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Chem Soc Jpn 80(12):2457–2464

    CAS  Google Scholar 

  94. Sasaki Y, Iwase A, Kato H, Kudo A (2008) The effect of cocatalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J Catal 259:133–137

    CAS  Google Scholar 

  95. Ohno T, Haga D, Fujihara K, Kaizaki K, Matsumura M (1997) Unique effects of iron(III) ions on photocatalytic and photoelectrochemical properties of titanium dioxide. J Phys Chem B 101(33):6415–6419

    CAS  Google Scholar 

  96. Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion-doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995

    CAS  Google Scholar 

  97. Ishii T, Kato H, Kudo A (2004) H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J Photoch Photobio A 163(1–2):181–186

    CAS  Google Scholar 

  98. Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106(19):5029–5034

    Google Scholar 

  99. Kudo A, Tanaka A, Domen K, Onishi T (1988) The effects of the calcination temperature of SrTiO3 powder on photocatalytic activities. J Catal 111(2):296–301

    CAS  Google Scholar 

  100. Darwent JR, Mills A (1982) Photo-oxidation of water sensitized by WO3 powder. J Chem Soc Faraday T 78:359–367

    CAS  Google Scholar 

  101. Weaver ER, Berry WM, Bohnson VL, Gordon BD (1920) The ferrosilicon process for the generation of hydrogen, Report No. 40. Annual Report National Advisory Committee for Aeronautics

    Google Scholar 

  102. Guo J, Chen X (eds) (2011) Solar hydrogen generation: transition metal oxides in water photoelectrolysis. McGraw Hill, New York

    Google Scholar 

  103. Musa A, Al-Saleh M, Loakeimidis ZC, Ouzounidou M, Yentekakis IV, Konsolakis M, Marnellos GE (2014) Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs). Int J Hydrogen Energy 39(3):1350–1363

    Google Scholar 

  104. Kumar K, Roy S, Das D (2013) Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresour Technol 145:116–122

    CAS  Google Scholar 

  105. Sugai Y, Purwasena IA, Sasaki K, Fujiwara K, Hattori Y, Okatsu K (2012) Experimental studies on indigenous hydrocarbon-degrading and hydrogen-producing bacteria in an oilfield for microbial restoration of natural gas deposits with CO2 sequestration. J Nat Gas Sci Eng 5:31–41

    CAS  Google Scholar 

  106. Huang L, Zhou J, Hsu A, Chen R (2013) Catalytic partial oxidation of n-butanol for hydrogen production over LDH-derived Ni-based catalysts. Int J Hydrogen Energy 38(34):14550–14558

    CAS  Google Scholar 

  107. Ge Z, Guo S, Guo L, Cao C, Su X, Jin H (2013) Hydrogen production by non-catalytic partial oxidation of coal in supercritical water: explore the way to complete gasification of lignite and bituminous coal. Int J Hydrogen Energy 38(29):12786–12794

    CAS  Google Scholar 

  108. Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias FM, Ferreira CM (2013) Hydrogen production from methanol reforming in microwave “tornado”-type plasma. Int J Hydrogen Energy 38(22):9145–9157

    CAS  Google Scholar 

  109. Kim HS, Kim YH, Ahn BT, Lee JG, Park CS, Bae KK (2014) Phase separation characteristics of the Bunsen reaction when using HI x solution (HI–I2–H2O) in the sulfur–iodine hydrogen production process. Int J Hydrogen Energy 39(2):692–701

    CAS  Google Scholar 

  110. Liberatore R, Lanchi M, Caputo G, Felici C, Giaconia A, Sau S, Tarquini P (2012) Hydrogen production by flue gas through sulfur–iodine thermochemical process: economic and energy evaluation. Int J Hydrogen Energy 37(11):8939–8953

    CAS  Google Scholar 

  111. Xing Z, Zong X, Pan J, Wang L (2013) On the engineering part of solar hydrogen production from water splitting: photoreactor design. Chem Eng Soc 104:125–146

    CAS  Google Scholar 

  112. Zhang W, Li Y, Wang C, Wang P, Wang Q (2013) Energy recovery during advanced wastewater treatment: Simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis. Water Res 47(3):1480–1490

    CAS  Google Scholar 

  113. Yu S, Huang C, Liao C, Wu JCS, Chang S, Chen K (2011) A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting. J Membr Sci 382(1–2):291–299

    CAS  Google Scholar 

  114. Liao C, Huang C, Wu JCS (2012) Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2:490–516

    CAS  Google Scholar 

  115. Liao C, Huang C, Wu JCS (2012) Novel dual-layer photoelectrode prepared by RF magnetron sputtering for photocatalytic water splitting. Int J Hydrogen Energy 37(16):11632–11639

    CAS  Google Scholar 

  116. Minggu LJ, Daud WRW, Kassim M (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting. Int J Hydrogen Energy 35(11):5233–5244

    CAS  Google Scholar 

  117. Matsumoto H, Mashimo H, Kuroda C (2012) Process analysis of rotary-type solar reactor for hydrogen production systems. Comput Aided Chem Eng 30:1103–1107

    CAS  Google Scholar 

  118. Zhang C, Zhu X, Liao Q, Wang Y, Li J, Ding Y, Wang H (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrogen Energy 35(11):5284–5292

    CAS  Google Scholar 

  119. Zhang Z, Hossain MF, Takahashi T (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energy 35(16):8528–8535

    CAS  Google Scholar 

  120. Lo C, Huang C, Liao C, Wu JCS (2010) Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int J Hydrogen Energy 35(4):1523–1529

    CAS  Google Scholar 

  121. Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, Shen S, Liu G, Hu X, Zhang X, Zhang K, Ma L, Guo P (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrogen Energy 35(13):7087–7097

    CAS  Google Scholar 

  122. Huang C, Liao C, Wu C, Wu JCS (2012) Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films. Sol Energy Mater Sol Cell 107:322–328

    CAS  Google Scholar 

  123. Yan W, Zheng CL, Liu YL, Guo LJ (2011) A novel dual-bed photocatalytic water splitting system for hydrogen production. Int J Hydrogen Energy 36(13):7405–7409

    CAS  Google Scholar 

  124. Babu VJ, Kumar MK, Nair AS, Kheng TL, Allakhverdiev SI, Ramakrishna S (2012) Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int J Hydrogen Energy 37(10):8897–8904

    CAS  Google Scholar 

  125. Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T (2013) Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. Int J Hydrogen Energy 47(3):1480–1490

    Google Scholar 

  126. Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T (2013) Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. Int J Hydrogen Energy 38(20):8244–8253

    CAS  Google Scholar 

  127. Bae SW, Ji SM, Hong SJ, Jang JW, Lee JS (2009) Photocatalytic overall water splitting with dual-bed system under visible light irradiation. Int J Hydrogen Energy 34(8):3243–3249

    CAS  Google Scholar 

  128. He Y, Yan F, Yu H, Yuan S, Tong Z, Sheng G (2014) Hydrogen production in a light-driven photoelectrochemical cell. Appl Energy 113:164–168

    CAS  Google Scholar 

  129. Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B (2013) Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrachimica Acta 107:313–319

    CAS  Google Scholar 

  130. Zhu L, Qiang YH, Zhao YL, Gu XQ (2013) Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode. Appl Surf Sci 292:55–62

    Google Scholar 

  131. Danko DB, Sylenko PM, Shlapak AM, Khyzhun OY, Shcherbakova LG, Ershova OG, Solonin YM (2013) Photoelectrochemical cell for water decomposition with a hybrid photoanode and a metal-hydride cathode. Sol Energy Mater Sol Cell 114:172–178

    CAS  Google Scholar 

  132. Wang G, Ling Y, Wang H, Xihong L, Li Y (2014) Chemically modified nanostructures for photoelectrochemical water splitting. J Photochem Photobiol C 19:35–51

    CAS  Google Scholar 

  133. Li Y, Yu H, Song W, Li G, Yi B, Shao Z (2011) A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrogen Energy 36(22):14374–14380

    CAS  Google Scholar 

  134. Hsu C, Chen D (2011) Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting. Int J Hydrogen Energy 36(24):15538–15547

    CAS  Google Scholar 

  135. Andrade L, Cruz R, Ribeiro HA, Mendes A (2010) Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. Int J Hydrogen Energy 35(17):8876–8883

    CAS  Google Scholar 

  136. Shin K, Yoo J, Hyeok JP (2013) Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays. J Power Sources 225:263–268

    CAS  Google Scholar 

  137. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. J Hazard Mater 185(2–3):575–590

    CAS  Google Scholar 

  138. Fujii K, Nakamura S, Sugiyama M, Watanabe K, Bagheri B, Nakano Y (2013) Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int J Hydrogen Energy 38(34):14424–14432

    CAS  Google Scholar 

  139. Zhang H, Huang S, Conibeer G (2012) Study of photo-cathode materials for tandem photoelectrochemical cell for direct water splitting. Energy Procedia 22:10–14

    Google Scholar 

  140. Avachat US, Jahagirdar AH, Dhere NG (2006) Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting. Sol Energy Mater Sol Cell 90(15):2464–2470

    CAS  Google Scholar 

  141. Mishra PR, Shukla PK, Srivastava ON (2007) Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 photoelectrodes. Int J Hydrogen Energy 32(12):1680–1685

    CAS  Google Scholar 

  142. Gibson STL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33:5931–5940

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Skillen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skillen, N., McCullagh, C., Adams, M. (2014). Photocatalytic Splitting of Water. In: Bahnemann, D., Robertson, P. (eds) Environmental Photochemistry Part III. The Handbook of Environmental Chemistry, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2014_261

Download citation

Publish with us

Policies and ethics